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1 Phase Correlation in the Presence of Blur

Our postprocessing uses the phase correlation-based image registration method
of Reddy and Chatterji [8] for aligning a pair of sharp and blurred images as
we found it robust to blur in practice. In this section, we provide a theoretical
background of the robustness of the phase correlation-based alignment to blur.

We first consider a simple case for image alignment where we have two images
f1 and f5 that have the same content with a slight translational shift. Then, we
can define the relationship between them as:

fa(z,y) = fi(z — 20,y — %0) (1)

where x and y are pixel coordinates, and xy and yg are translational shifts along
the z and y axes, respectively. The phase correlation-based alignment proposed
by Reddy and Chatterji [8] uses the Fourier domain to find z¢ and yo. Applying
the Fourier transform to Eq. (1), we can obtain:

Fy(u,v) = Fi(u,v) exp(—i(uzo + vyo)) (2)

where F} and Fy are the Fourier transforms of f; and fs, respectively. u and v
are 2-dimensional indices in the Fourier domain. ¢ is the imaginary unit defined
as i = —1.

Each component of a Fourier transform can be decomposed into its amplitude
and phase components as:

F(u,v) = |F(u,v)| exp(=i¢(u, v)) 3)

where |F(u,v)| and ¢(u,v) are the amplitude and phase of F'(u,v), respectively.
Based on this, Reddy and Chatterji define a cross-power spectrum S of the
images f; and f> to extract the phase difference between them as follows:

Fy(u,v)Fy (u,v)

S(u,v) = o (u, 0) P (0, 0)] = exp(—i(uxzg + vyo)) (4)
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Fig. 1. Phase-only reconstruction of a blur kernel.

where Fy(u,v) is the complex conjugate of Fy(u,v). By taking inverse Fourier
transform of S(u,v), we can obtain an impulse function that is approximately
zero everywhere except at (zo,yo). Thus, we can locate the maximum compo-
nent from the inverse Fourier transform of S to find the optimal parameters
for image alignment. Reddy and Chatterji [8] extend this approach to similarity
transforms.

We can extend the approach described above for a pair of blurred and sharp
images. We assume that a blurred image g and its corresponding sharp image f
has the relationship defined as:

9(x,y) = (f+h)(z,y) ()

where h is a blur kernel or a point spread function, and * is the convolution
operator. Eq. (5) is a generalization of Eq. (1) as h in Eq. (5) can describe
translational shift between g and f. By applying the Fourier transform to Eq.
(5), we can obtain:

G(u,v) = F(u,v)H (u,v) (6)

where G, F, and H are Fourier transforms of g, f, and h, respectively. The
cross-power spectrum of G and F' is then defined as:

G(u,v)F*(u,v) H(u,v)F(u,v)F*(u,v) H(u,v)

S0 0) = (G, o) F (o)~ [Hw,0) P, o) F(w,0)]  [Hwo)

where H(u,v)/|H (u,v)]| is the phase component of the blur kernel . The inverse
Fourier transform of S(u,v) is no longer an impulse function, but the phase-only
reconstruction of the blur kernel h, which still looks similar to h as shown in
Fig. 1. Locating the maximum component of the phase-only reconstruction of h
aligns f to a certain position of b, although it does not guarantee to align the
objects in f to the centers of blurry objects in g.

Unfortunately, the argument above does not generalize to similarity trans-
forms as shown in [7] or to spatially-varying blur. Nonetheless, thanks to our
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(a) Distribution of blur sizes (b) Images with large blurs in our dataset

Fig. 2. The distribution of blur sizes in the RealBlur dataset. The dataset mostly covers
small-scale blurs while it also includes extremely large blurs shown in (b).

physically-aligned imaging acquisition system, we found that the phase correlation-
based alignment works well in general on our dataset increasing the overall align-
ment accuracy between the sharp and blurred images as reported in our main

paper.

2 Additional Analysis on Our Dataset

Blur size distribution. To show the coverage of our dataset in the aspect of
blur, we report the blur sizes in our dataset. For analysis, we estimated blur
kernels for all images and manually inspected their sizes. Fig. 2(a) shows the
distribution of the blur sizes in our dataset. The distribution shows a skewed
and heavy-tailed shape, where most of the blurs are relatively small having sizes
of around 5 to 20 pixels, while there exist significantly large blurs up to 70 pixels,
which is 10% of the width of an image (Fig. 2(b)). This is because every blurred
image has a certain amount of blur due to the long exposure time of 1/2 sec.,
while large blurs occur less frequently.

Noise. Table 1 reports the average noise levels of the images in our dataset,
which are estimated by Chen et al.’s method [1]. The table also reports the
noise levels of the GoPro [6] and Reds [5] datasets, which are the most widely
used deblurring datasets, for reference. Both datasets consist of denoised images
by camera ISPs. As we use high ISO values, the sharp images in RealBlur-R
before denoising have a relatively higher level of noise. After denoising, the sharp
images in RealBlur-R have similar noise levels compared to the GoPro [6] and
Reds [5] datasets. The sharp and blurred images in the RealBlur-J dataset also
show similar noise levels to the other denoised images as the dataset consists of
images processed by camera ISPs.

3 Training Details

In this section, we describe how we train deblurring networks with our dataset
in our experiment.
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Table 1. Noise levels of the images in the RealBlur dataset in terms of standard
deviation of Gaussian noise.

Dataset Noise level
Sharp images before denoising 2.6714
RealBlur-R | Sharp images after denoising 0.3016
Blurred images 0.6654
Sharp images 0.3029
RealBlur-J Blurred images 0.4369
Sharp images 0.3474
GoPro [6] Blurred images 0.3042
. Sharp images 0.3571
Reds [5] Blurred images 0.3868

SRN-DeblurNet [10]. We use the source code of the authors provided on
their project webpage3. Specifically, we use the color version of SRN-DeblurNet
without LSTM as suggested by the authors. We train the network with its default
training setting except the number of iterations, which is set to 262,000 for
training both from scratch and from a pre-trained model in our experiments.
For training from a pre-trained model, we use the pre-trained model of the
authors. For training from scratch, we initialize the network as described in [10].
For training the network using all three datasets, which are ours, BSD-B and
GoPro [6], we oversample our dataset six times, and the GoPro dataset 10 times
to balance the datasets of different sizes.

DeblurGAN-v2 [3]. We use the framework with Inception-ResNet-v2 as its
backbone, and the double-scale discriminator with the RaGAN-LS loss [3]. We
use the source code provided by the authors?. We train the network using the
Adam optimizer with hyperparameters described in [3] except the number of
iterations. Specifically, we train the network with the learning rate of 10~ for
1,500,000 iterations, then linearly decay the learning rate to 10~7 for another
1,500,000 iterations. For training the network with our dataset and the BSD-B
and GoPro [6] datasets, we oversample our dataset six times, and the GoPro
dataset 10 times to balance the datasets of different sizes.

4 Generalization to Different Lenses

We present an additional experimental result that shows the generalization abil-
ity of deblurring networks trained with our dataset. Specifically, in this section,
we present an experimental result on the performance of a deblurring network
trained with our dataset on telephoto images. We refer the readers to the Supple-
mentary Material II for other experimental results that show the generalization
ability to other datasets captured with different cameras such as smartphone
cameras.

3 https://github.com/jiangsutx/SRN-Deblur
* https://github.com/TAMU-VITA /DeblurGANv2
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(a) Blurred image (b) Nah et al. [6] (c) Zhangetal. [12] (d) Zhangetal. [11]  (e) DeblurGAN [2]
PSNR/SSIM 27.04/0.7578 27.20/0.7708 25.45/0.7346 27.47/0.7718

(f) DeblurGAN-v2 [3]  (g) DeblurGAN-v2* [3] (h) SRN-DeblurNet [10] (i) SRN-DeblurNet* [10]  (j) Ground truth
28.03/0.7959 28.09/0.7975 27.39/0.7964 30.62/0.8575

(k) Blurred image (I) Nah et al. [6] (m) Zhang et al. [12] (n) Zhang et al. [ (0) DeblurGAN [2]
PSNR/SSIM 28.61/0.8745 29.48/0.9423 29.23/0. 9379 28.94/0.9309

(p) DeblurGAN-v2 [3]  (q) DeblurGAN-v2* [3] (r) SRN-DeblurNet [10] (s) SRN-DeblurNet* [10]  (t) Ground truth
29.45/0.9376 33.32/0.9382 29.44/0.9424 35.71/0.9626

Fig. 3. Qualitative comparison on RealBlur-TeleJ and RealBlur-TeleR. The networks
marked in blue with ‘*” are trained with our dataset. The blurred image in (a) is from
RealBlur-TeleJ. DeblurGAN-v2 [3] and SRN-DeblurNet [10] in (g) and (i) are trained
with RealBlur-J. The blurred image in (k) is from RealBlur-TeleR. DeblurGAN-v2
and SRN-DeblurNet in (q) and (s) are trained with RealBlur-R. Below each result, its
PSNR and SSIM values are reported.

Telephoto lenses produce blurry images with different characteristics from
wide-angle lenses used in our system. They often cause both camera shake and
defocus blur particularly easily due to their narrow fields of view and shallow
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Table 2. Benchmark of deep learning-based deblurring methods on RealBlur-TeleJ
and RealBlur-TeleR. Blue*: networks trained with RealBlur. Black: networks trained
only with synthetic datasets. The methods are sorted in the descending order with

respect to PSNR.

RealBlur-TeleJ

RealBlur-TeleR

Methods

PSNR/SSIM

Methods

PSNR/SSIM

SRN-DeblurNet* [10]
DeblurGAN-v2* [3]
DeblurGAN-v2 [3]
SRN-DeblurNet [10]
Zhang et al. [12]
DeblurGAN [2]
Nah et al. [6]
Zhang et al. [11]

28.14/0.8463
26.87/0.8041
26.27/0.8020
25.89/0.7943
25.61/0.7794
25.55/0.7676
25.37/0.7580
24.72/0.7581

SRN-DeblurNet* [10]
DeblurGAN-v2* [3]
SRN-DeblurNet [10]
Zhang et al. [12]
DeblurGAN-v2 [3]
Zhang et al. [11]
DeblurGAN [2]
Nah et al. [6]

37.37/0.9470
35.44/0.9112
35.36/0.9303
35.19/0.9263
35.12/0.9258
34.67/0.9216
33.01/0.8815
32.39/0.8419

depths of field. Thus, in this experiment, we study how deblurring networks
trained with our dataset that does not have defocus blur generalize to blurry
images taken using telephoto lenses.

To this end, we created additional test sets of real-world blurred images taken
using telephoto lenses. To create the test sets, we replaced the lenses in our image
acquisition system with telephoto lenses (SEL85F18), and captured 996 pairs of
images of 50 different scenes. We then applied our postprocessing to the images
with some minor changes. Specifically, we downsampled the images by 1/8 as
blurs caused by telephoto lenses tend to be larger. We also omitted cropping
and lens distortion correction as the images taken using telephoto lenses have
neither invalid regions nor noticeable lens distortion. Finally, we obtained two
additional test sets: RealBlur-TeleR from raw images and RealBlur-TeleJ from
JPEG images. The resulting blurred images in the test sets have both motion
and defocus blurs, while the sharp images have only defocus blurs.

We then evaluate the performance of deep learning-based deblurring methods
on RealBlur-TeleR and RealBlur-TeleJ. For the evaluation on RealBlur-TeleJ, we
trained DeblurGAN-v2 [3] and SRN-DeblurNet [10] with RealBlur-J as well as
the GoPro [6] and BSD-B datasets as described in the paper. For the evaluation
on RealBlur-TeleR, we trained the networks with RealBlur-R instead of RealBlur-
J.

Fig. 3 shows a qualitative comparison. In the figure, the blurred images on
the top and on the bottom are from RealBlur-TeleJ and RealBlur-TeleR, respec-
tively. The blurred images in the figure have both camera shakes and defocus
blur. While the other networks trained with only synthetic datasets fail to re-
store sharp images, the networks trained with our datasets (marked in blue with
) successfully remove camera shakes. Regarding defocus blur, interestingly,
the networks trained with our dataset keep defocus blur intact while removing
motion blur even though they are trained using images without defocus blur. It
will be interesting future work to investigate how networks remove motion blur
selectively, and how to handle both defocus and motion blur properly. Table
2 shows a quantitative comparison. The table shows that the networks trained
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with RealBlur-R and RealBlur-J clearly outperform the other networks even on
RealBlur-TeleR and RealBlur-TeleJ achieving high PSNR and SSIM values.

5 Deblurring Images with Large Blur

As shown in Sec. 2, our dataset mostly contains relatively small-sized blurs.
In our preliminary experiments, we found that existing networks such as [6,
10] mostly fail to handle large blurs even if we train them with large blurs.
Thus, for RealBlur, we mainly collected images with small blurs to study the
domain gap between synthetic and real-world blurs. In this section, we describe
one preliminary experiment to study the capability of existing methods on large
blurs.

Most existing deblurring networks [6, 10,12, 11] share common components
such as the encoder-decoder and multi-scale structures. In our experiment, we
evaluate only the performance of SRN-DeblurNet [10] on large blurs as it is a
representative method that is equipped with the encoder-decoder and multi-scale
structures.

For the experiment, we randomly selected 400 images for generating training
sets and the remaining 100 images for generating test sets from the BSD500
dataset [4]. Then, we generated three training sets with different blur sizes using
synthetic uniform blur kernels. Specifically, for each sharp image, we generated
40 synthetic blur kernels using Schmidt et al.’s method [9] to generate blurred
images. We generated a small blur dataset with blur sizes from 5 to 45 pixels,
and a large blur dataset with blur sizes from 35 to 75 pixels. In both datasets,
blur sizes are uniformly distributed. Then, we merged the two datasets and
obtain the third dataset that has both small and large blurs. We denote these
training sets as BSD-B(5-45)trqin, BSD-B(35-75)train, and BSD-B(5-75)trqin, re-
spectively. Each of BSD-B(5-45)yqin and BSD-B(35-75)¢4in has 16,000 blurred
images, while BSD-B(5-75) ¢4 has 32,000 images. We generated two test sets
with different blur sizes in a similar manner, which are denoted as BSD-B(5-
45)¢est and BSD-B(35-75)cst. Each of BSD-B(5-45)¢cs; and BSD-B(35-75)cst
has 4,000 blurred images. We trained SRN-DeblurNet on each training set and
compared its performance on each test set.

Fig. 4 shows some examples of deblurring results of the models trained with
different training sets. Table 3 reports the performance with respect to different
training and test sets. As shown in Fig. 4, regardless of the training sets, the
network often fails to deblur images with large blurs in BSD-B(35-75)cst, and
achieves low PSNR and SSIM values, which indicates the limited capability of
the network. Another interesting observation the figure and table is that the
performance of the network trained with BSD-B(5-75)¢qin is lower than the
network trained with BSD-B(5-45) ¢4 on BSD-B(5-45)cs;. This indicates that
including images with large blurs in training hinders the performance of the
network, which is another cue showing the limited capability of the network.
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(a) Blurred image (b) BSD-B(5~45) (c) BSD—B(35~75) (d) BSD-B(5~75) (e) Ground truth
PSNR/SSIM 25.32/0.7818 18.71/0.4103 22.12/0.6210

(f) Blurred image ~ (g) BSD-B(5~45)  (h) BSD-B(35~75) (i) BSD-B(5~75) (j) Ground truth
PSNR/SSIM 24.98/0.7269 17.95/0.2109 20.81/0.4405

(k) Blurred image (1) BSD-B(5~45)  (m) BSD-B(35~75)  (n) BSD-B(5~75) (o) Ground truth
PSNR/SSIM 16.28/0.2516 17.50/0.2945 17.80/0.2999

T

(p) Blurred image (q) BSD-B(5~45) (r) BSD-B(35~75) (s) BSD-B(5~75) (t) Ground truth
PSNR/SSIM 18.45/0.3470 19.46/0.3788 19.30/0.3831

Fig. 4. Qualitative comparison of deblurring results with different blur sizes. The
first column ((a), (f), (k), (p)) shows input blurred images with different blur sizes.
The second, third, and fourth columns show deblurring results of SRN-DeblurNet [10]
trained with BSD-B(5-45)¢rain, BSD-B(35-75)trained, and BSD-B(5-75)¢rqined, respec-
tively. The fifth column shows the ground truth sharp images. The blur sizes of (a),
(), (k), and (p) are 21, 15, 71, and 69, respectively.

Table 3. Quantitative comparison of SRN-DeblurNet [10] trained with training sets
with different blur sizes.

Test sets (PSNR/SSIM)
BSD-B(5-45)cs; BSD-B(35-75)renr
BSD-B(5-45)train | 25.65/0.7098 19.71/0.4640
BSD-B(35-75)irain| 22.35/0.5860  21.21/0.5152
BSD-B(5-75)¢rain | 25.17/0.6918 21.55/0.5243

Training sets
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