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Abstract

Previous mesh compression techniques provide nice
properties such as high compression ratio, progressive de-
coding, and out-of-core processing. However, none of them
supports therandom accessibilityin decoding, which en-
ables the details of any specific part to be available with-
out decoding other parts. This paper introduces the random
accessibility to mesh compression and proposes an effec-
tive framework for the property. The key component of the
framework is awire-net meshconstructed from a chartifi-
cation of the given mesh. Experimental results show that
random accessibility can be achieved with competent com-
pression ratio, only a little worse than single-rate and
comparable to progressive encoding.

Keywords: Mesh compression, Random accessiblity, Wire-
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1. Introduction

As exquisite meshes gain popularity in various applica-
tions, mesh compression has been an active area of research
to reduce storage and transmission time for last 10 years.
Single-rate compression [28, 22, 29, 2, 18] has reached a so-
phisticated level, especially in connectivity encoding. Pro-
gressive compression [5, 21, 1, 9] provides decompressed
meshes in multi-resolutions, allowing immediate access of
global shape during transmission with a little more over-
head than single-rate algorithms.

However, none of the techniques provides the property
of random accessibilityin the sense that the details of any
specific part in the original mesh can be made available
without decoding other parts. The techniques mostly have
a symmetric process between encoding and decoding. They
tended to concentrate more on how to compress and re-
sulted in a deterministic decompression as merely a reverse
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of compression. Consequently, only streaming of the de-
compressed mesh data is provided, prohibiting random or-
der access of compressed mesh parts.

In contrast, in other domains of compression, the random
accessibility has been considered as an important property
and incorporated into compression schemes. The most im-
mediate example is the MPEG encoding for videos [20]. In
a MPEG video, we can play a selected scene without de-
coding all the preceding frames. In volume compression, a
3D wavelet-based scheme was proposed which allows ran-
dom access to compressed voxels [4].

In this paper, we introduce the random accessibility to
mesh compression and propose a framework to support the
property. Similar to other domains, such as videos and vol-
umes, parts of a mesh can be selectively decoded in a non-
deterministic order for visualization or processing such as
editing while the other parts remain in the compressed form.
The key component of our framework is awire-net mesh,
which plays the role of an indexing structure for random ac-
cess to mesh parts (see Fig. 1). By combining the suitable
techniques for the framework, we achieve competitive com-
pression ratio with random accessibility, which is only a bit
worse than single-rate and comparable to progressive en-
coding.

2. Related Work

2.1. Random accessible compression

Random accessibility that allows us to only restore parts
on-demand is very common in the compression of multime-
dia data such as sound and video. MPEG provides a set of
compression formats to encode digital audio and video with
high compression ratio and random accessibility [20]. Ba-
jaj et al. [4] proposed an efficient wavelet-based compres-
sion scheme for interactive volume data visualization. The
success of random accessibility in other domains, such as
multimedia and volume data, motivated our work in this pa-
per with the observation that the property has not been pro-
vided in mesh compression.



2.2. Mesh compression

Single-rate compressionEver since the introduction
of Deering’s algorithm [6], single-rate compression of
3D meshes has been an active area of research. “Edge-
breaker” [22] was introduced first with a theoretical
bound for the compression ratio. The innovative Touma-
Gotsman’s [29] utilized the entropy of valence distribution
in a mesh for better compression ratio. Alliez-Desbrun’s [2]
improved upon [29] and achieved pseudo-optimal ra-
tios for connectivity encoding. All of these algorithms were
initially developed for triangle meshes. Polygon mesh com-
pression techniques have also been proposed [14, 16, 12].
“Angle-Analyzer” [18] for a triangle-quad mesh applied lo-
calized intrinsic geometry property for better compres-
sion ratio. Recently spectral approaches [15, 26] inspired
by image compression and shape compression tech-
niques [17, 11, 3] via remeshing have also been intro-
duced.

Progressive compressionProgressive compression al-
gorithms are to provide the overview of the complete
mesh in a coarse to fine fashion with the best trade-off be-
tween rate and distortion. Connectivity-driven [27, 5, 21, 1],
geometry-driven [7, 9], and remeshing-based [17, 11] al-
gorithms have been proposed. Progressive compres-
sion is similar to our random accessible compression
in a way to give an immediate access to the decom-
pressed shape but different in the levels of access. In pro-
gressive compression, to access a part of the mesh in the
finest level, still we have to wait for finishing the whole de-
compression. Our algorithm provides a more interactive
and direct way to access arbitrary parts of the decom-
pressed mesh.

3. Overview

We can define the random accessibility of a compression
scheme as the property that allows the decoding of desirable
parts in an arbitrary order without decoding the other non-
interesting parts. To support such a property, a compression
scheme should have two components: an indexing struc-
ture for the parts of the compressed object and an encod-
ing/decoding technique for separately handling the parts.

We decompose the given mesh into separate segments,
called charts, and handle the charts independently from
each other in the encoding/decoding process. Although a
progressive scheme can be applied to encode the charts, we
use a single-rate algorithm to achieve better compression
ratio. In addition, in the setting of random accessible com-
pression, the benefits of progressive decoding are much re-
duced. Since any desired part can be accessed without de-
coding other parts, the latency can be minimized by trans-
mitting only the necessary data.

(a) chartification (b) wire-net mesh

Figure 1. Chartification and its corresponding wire-

net mesh: A wire-net mesh is a manifold structure

that abstractly represents a chartification. Each ver-

tex/edge/face of a wire-net mesh corresponds to a cor-

ner vertex/wire/chart of a chartification, respectively.

With compressed charts, we have no immediate informa-
tion on the shape of the original mesh and due to the irreg-
ularity, an underlying structure for indexing, such as a time
line in a video or a 3D index for a volume, is also not avail-
able. To resolve this problem, we use a polygonal mesh,
called awire-net mesh, constructed from the chartification
of the original mesh (see Fig. 1). Each chart is mapped to
a face of the wire-net mesh and the common boundary be-
tween two adjacent charts, called awire, is mapped to an
edge. The vertices of a wire-net mesh come from the cor-
ner vertices of the chartification. By designating the faces
of a wire-net mesh, we can specify the desirable parts of the
original mesh in the unit of charts.

The wires of the chartification are compressed sepa-
rately from the chart interiors. When the selected charts
are to be reconstructed, we first decompress the wires sur-
rounding the charts and then decompress the chart interi-
ors from the boundaries. With this approach, the common
boundary is reconstructed only once and shared for ad-
jacent charts,providing an easy stitching of arbitrarily se-
lected charts.

4. Encoding/Decoding Steps

4.1. Mesh chartification

The first step of the encoding process is the chartifica-
tion of the given mesh. Since the chartification determines
the structures of the wire-net mesh, wires, and charts, it
has influences on the compression ratios of the compo-
nents. Among the three components, the wire-net mesh has
the simplest structure, whose vertices come from the cor-
ner vertices of the chartification. In contrast, wires con-
sist of the boundary vertices of the charts and contain a
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much larger number of vertices than the wire-net mesh. Ob-
viously, charts contains most of the vertices of the given
mesh. Hence, the bits used for the wire-net mesh in the com-
pressed file is rather small and the wires and charts deter-
mines the majority of the compression performance.

In this paper, we consider compactness and planarity of
charts as the requirements of the chartification. The com-
pactness of charts is important to reduce the length of wires,
which implies that the wires are straightened as much as
possible. This property helps to increase the compression
ratio when we encode the geometry of a wire. The planarity
of a chart is related with the geometry compression ratio
when we encode the chart. When a chart is planar, we can
encode the geometry of the chart with high compression ra-
tio.

Chartification methods that consider the compactness
and planarity of charts have been developed for texture
mapping and fast global illumination [10, 24, 25]. We have
experimented with these methods and found that the method
proposed by Sanderet al. [25] for multi-chart geometry im-
ages achieves the best compression performance. We have
tested variations of [25] with different cost functions but the
original formulation in [25] gave comparable compression
ratio in most cases of our experiments.

The basic idea of the chartification method in [25], in-
spired by Lloyd quantization [19], is to repeatedly update
the current charts by moving the seeds to the chart centers.
The iteration results in a centroidal Voronoi tessellation [8]
of the mesh surface. By including the normal variation of
the faces in the distance function, the final charts capture the
planar regions on the mesh surface where the chart bound-
aries are mapped to the features with large normal varia-
tions. Although the compactness of charts are not directly
considered in the distance function, a centroidal Voronoi
tessellation usually contain short chart boundaries.

In [25], the initial chartification for iterative updates is
obtained by selecting the seeds one by one. In this paper, we
use the chartification method based on face clustering [10]
for the initialization. When the desired number of chartsk
is given, we first generatek charts by face clustering and the
result is initial chartification for iterative updates. In the face
clustering, we maintain each chart as a topological disk.

4.2. Wire-net mesh compression

To compress a wire-net mesh, we adopt the technique
proposed by Khodakovskyet al. [16] for connectivity en-
coding. For geometry encoding, the parallelogram predic-
tion for polygons [13] can be used. However, a wire-net
mesh has a more irregular distribution of vertex positions in
a face than a usual polygonal mesh. This irregularity makes
the parallelogram prediction [13] less efficient for a wire-
net mesh.
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(a) vertices on a wire-net mesh (b) vertices on a wire

Figure 2. Vertex position encoding: (a) Each vertex po-

sition in the polygon Pj is encoded from the predicted

center of Pj , which is estimated from the center of poly-

gon Pi with the parallelogram rule. (b) Each vertex posi-

tion pk in a wire is encoded from p′k, which is estimated

by the 1D version of the parallelogram rule with the two

previous vertices, pi and p j .

To encode the geometry of a wire-net mesh, we apply
the parallelogram prediction [29] to the centers of polygons
(see Fig. 2(a)). That is, when a new polygonPj is visited
from Pi through a gate, the center ofPj is estimated from
the center ofPi by the parallelogram prediction. Then, the
geometry of vertices inPj are encoded by using the differ-
ences from the estimated center.

4.3. Wire compression

Since a wire is a sequence of vertices, the connectivity
of a wire is obvious. For connectivity encoding of a wire, it
is sufficient to store the number vertices on the wire. To en-
code the geometry, we use a linear prediction for the vertex
sequence, which is a 1D version of the parallelogram pre-
diction (see Fig. 2(b)). Whenpi , p j , andpk are three consec-
utive vertices on a wire, we predict the positionp′k for pk by
reflectingpi with respect top j ; that is,p′k = p j +(p j − pi).

4.4. Chart compression

In this paper, to compress each chart, we use “Angle-
Analyzer” [18], which is a single-rate compression algo-
rithm with the best performance reported so far. Since the
chart boundary has already been encoded as wires, only the
chart interior is encoded with the algorithm. The encoding
starts from the chart boundary (i.e., wires) by initializing the
gate list with the chart boundary edges and continues until
every face in the chart is traversed. For geometry encod-
ing, among the two techniques proposed in [18], we use the
local coordinate based approach. In the approach, the nor-
mal vector of the back face of a gate is used to define the
local coordinates, as shown in Fig. 3(a). However, there ex-
ists no back face for a gate generated from the chart bound-
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Figure 3. Local frames for geometry (de)coding of

a chart: (a) The geometry of the opposite vertex is

(de)coded with a local frame, defined with the normal

of the back face fb and the direction of the current gate

edge. (b) The normal stored at edge e is used to define

a local frame for a vertex adjacent to the chart bound-

ary.

ary. To resolve this problem, we store a normal vector for
each edge of chart boundaries, as shown in Fig. 3(b). The
normal vector is computed as the average normal vector of
the two faces adjacent to the boundary edge and encoded by
spherical quantization [23].

4.5. Compressed file structure

To enable the random access to the charts through the
wire-net mesh, we have to link the edges and faces of the
wire-net mesh to the encoded wires and charts, respectively.
When the wire-net mesh is recovered at the beginning of the
decoding stage, each edge is assigned anedge-id. Thisedge-
id is used as the pointer to access the corresponding wire in
the compressed file. The mapping from a face to a chart is
handled with aface-idin the same way.

Fig. 4 illustrates our file structure for random accessible
mesh compression. Each shaded region in Fig. 4 represents
the compressed data of a wire-net mesh, wires, or charts.
In the mesh information part, we store the auxiliary infor-
mation for decoding in the raw format, such as a bound-
ing box, quantization levels, and so on. The pointer table
keeps track of the positions in the file at which the com-
pressed data of wires and charts are stored. In the decoding
phase, the pointer table resides in the main memory.

4.6. Chart decompression

Suppose that a facef of the wire-net mesh is selected for
decoding the corresponding chart. From theedge-ids of the
edges of the facef , we first obtain the pointers to the wires
to be decoded in the compressed file. The connectivity and
geometry of the chart boundary are then recovered from the
wires and the vertices of the facef . The reconstructed chart

Bounding box,
Quantization level,
etc.

Mesh info.

Wire-net mesh

Wire/Chart
pointer table

Wires

Charts

Geometry data
Normal data (4-bit quantized)

Wire

Op. codes for connectivity
Geometric data

Normal components
Tangential components

Chart

Figure 4. File structure for random accessible mesh

compression: The shaded regions contains the com-

pressed data described in Sec. 4.

boundary gives the initial gate list. Also, theface-idof f is
used to access the encoded chart data. The chart interior is
recovered by decoding the chart with the initial gate list ob-
tained from wires. When two or more charts are decoded si-
multaneously, the common wires are decoded only once and
used as the shared chart boundaries.

5. Experimental results

We experimented with our random accessible mesh com-
pression technique on several models and different numbers
of charts. We also compared the compression results with
the current state-of-the-art mesh compression techniques. In
this paper, for entropy encoding, we use an order-1 adaptive
arithmetic coder [30].

Table 1 shows the comparison of compression ratios be-
tween our technique, single-rate algorithms [29, 18], and a
progressive algorithm [1]. For geometry encoding of [29],
we used 12-bit quantization. For [18], the quantization lev-
els were determined to have almost same distortion errors
with 12-bit quantization of [29]. We also used 12-bit quan-
tization for [1]. For our technique, we used the same quan-
tization level with [18] for geometry encoding of chart ver-
tices.

In Table 1, our technique gives little worse compression
ratios than a single rate algorithm because it has to pay some
overhead to provide the good property of random accessi-
bility. However, with up to certain number of charts, the
compression ratio of our technique is better than progres-
sive compression, regardless of mesh models. This implies
that our technique is a good alternative to progressive com-
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model TG [29] LAD [18] AD [1] ours (#charts)
(# of V)

Igea 17.24 14.36 19.15 17.72 (50)
(67,180) 18.46 (60)

18.52 (70)
19.08 (80)
19.36 (90)
19.56 (100)

Skull 12.35 11.41 16.80 14.98 (50)
(98,306) 15.59 (70)

16.47 (100)
Iphigenie 9.47 13.78 15.94 16.01 (70)
(371,750) 16.37 (100)

Feline 16.56 15.62 20.30 19.33 (50)
(49,864) 20.77 (70)

21.40 (100)
Dino 19.80 16.53 25.29 22.80 (50)

(14,070) 23.62 (70)
24.84 (100)

Table 1. Comparison of compression ratios (bpv) for

single-rate [29, 18], progressive [1], and our techniques:

With up to 70 charts, our technique outperforms pro-

gressive compression.

pression when a prompt access of mesh shape is necessary
without decoding the whole compressed data.

Table 1 also shows a trade-off between random acces-
sibility and compression ratio. When the number of charts
is small, we obtain a high compression ratio although ran-
dom accessibility is not fully supported. As the number of
charts increases, we can provide more random accessibil-
ity with overhead in the compression ratio. Fig. 5 shows the
rate/distortion curves with different numbers of charts for
the Igea model. We can see that when the number of charts
is larger, more bits are needed to achieve the same distor-
tion error.

In Fig. 6, we visualized a large mesh with two differ-
ent ways of decoding charts. One is simply decoding and
rendering all charts and the other is processing only view-
dependently selected charts. For view-dependent selection
of charts, we test the visibility of charts using the face nor-
mals of the wire-net mesh. As shown in Fig. 6, when we
render a mesh view-dependently, the rendering time is re-
duced with the number of visible charts, which is made pos-
sible with the random accessibility of our framework.

6. Discussion and Future Work

In this paper, we proposed a novel framework for mesh
compression which provides the random accessibility sim-
ilar to MPEG encoding for sound and video. By care-
fully adopting the component techniques, we can achieve

0.0005

0.00055

0.0006

0.00065

0.0007

0.00075

0.0008

0.00085

0.0009

0.00095

0.001

11 12 13 14 15 16 17 18 19 20 21

Bits (bit/v)

D
is

to
rti

on
 e

rr
or

50 70 90

Figure 5. Rate/distortion curves with different numbers

of charts for the Igea model

(a) screen image (b) all charts (c) face part

Figure 6. View-dependent rendering example: The Iphi-

genie model has been compressed with 100 charts. (a)

Image shown on the screen; (b) Restoring all charts one

by one (440 milliseconds); (c) View-dependent restoring

of only the face part (50 milliseconds, around 10% of the

total charts).

high compression ratio, which is slightly worse than single-
rate compression and in most cases, better than progressive
compression.

An interesting future work would be providing the mul-
tiresolution granularity for the random accessible compres-
sion framework.
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