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1. Calculating a gradient of the regularization
term

For updating weights of a network in the backpropaga-
tion procedure, a gradient equation of a regularization term
should be defined. For calculating the gradient, we assume
each pixel is locally independent. The gradient of the sparse
prior at each pixel in the loss layer is then calculated using
four image gradients between the pixel and its four neigh-
bors. That is,

∂R(f)

∂fi,j
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Notations are the same as in Eq. (1) in the main paper.

2. Wiener filter parameter estimation
Wiener filter [17] can be represented by

X̂ =

[
1

V

|V |2

|V |2 +K

]
� Y1, (2)

where K = var(n)
var(x) is the parameter to control the output

quality. Other notations are the same as in Eq. (3) in the
main paper.

In the real applications which need the non-blind decon-
volution, we do not know the variances of both latent im-
age and noise. To avoid an exhaust search for the optimal
K, we develop simple algorithms to estimate the variances.
The variance of noise is estimated from the difference be-
tween the input and the median-filtered images. This simple
method works properly except when the noise level is very
low, where most regions of images are piecewise smooth.
We can assume the variance of the latent image bigger than
that of the input image as the image variance is reduced by
blurring. We estimate the latent image variance by increas-
ing the input image variance using a simple curve defined

as:

estimated var(x) =

√
9var(y)

8
(3)

We use this estimated K for Wiener filter to generate
our dataset for training. Although our estimation algorithm
for K is very rough, this approach helps us produce decon-
volution results with similar artifact behaviors needed for
effective training of our network. The same algorithm is
used to estimateK when we apply Wiener filter to the input
blurry image in the preprocessing step of our deconvolution
framework. Sometimes, especially for real blurry images
with inaccurate kernels, the estimated K may not produce
the best deconvolution results. In that case, a better K can
be found by few trials to search from the estimated value.

3. Additional experiments
3.1. Dealing with cropped blurry images

In the main paper, we used a circular convolution, pre-
serving the image size, to make a synthetic blurry image
as MLP [15] did. However, some non-blind deconvolution
methods [5, 14] used a cropped convolution, which crops
image boundary after convolution, in their papers. This dif-
ferent condition could make inconsistent experimental re-
sults for other methods. We did an additional experiment
using the cropped convolution as shown in Fig. 1 for a pair
comparison. Wiener filter may generate ringing artifacts in
this case, so we use a padding technique [12] which makes
the image boundary circularly smooth for preventing it. Af-
ter applying it, our method still shows better performance
than [5, 14] as shown in Fig. 1.

3.2. Blind deconvolution

In the middle of the kernel estimation, the initial and in-
termediate blur kernels are rather inaccurate, so we used a
strong regularization parameter (α = 0.08) for training our
network. We then compared our image deblurring frame-
work with Cho and Lee [3], Levin et al.[11], Xu and Jia
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(a) input (b) Fortunato [5] (c) CSF [14] (d) ours (e) ground-truth

Figure 1. Qualitative comparison with boundary-cropped images. The blurred image was blurred by kernel (a) and (e) in the paper and
weak noise (1%). PSNRs of the top rows are 26.99, 26.54, 28.97 dB from (b) to (d). PSNRs of the bottom row are 27.66, 27.35, 30.10 dB
from (b) to (d).

(a) ground-truth (b) L0 (strong) [22] (c) L0 (weak) [22] (d) dark channel [13] (e) our method

Figure 3. Results of blind deconvolution methods for a noisy image. The top row shows interim results and estimated kernels. The bottom
row shows the final result of each method. We took the input image from [21].
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Figure 2. Quantitative comparison on two blind deblurring bench-
marks [8, 10]. Our method is comparable to the state-of-the-art
methods.

[20], Krishnan et al.[9], Hirsch et al.[7], Whyte et al.[16],
Xu et al.[22], and Pan et al.[13] using two image deblur-
ring benchmarks [8, 10]. We set K = 0.02 (for [8]) and
K = 0.06 (for [10]) in Eq. (2) in all experiments. Fig. 2
shows our framework produces results comparable to the

state-of-the deblurring methods. Our framework also re-
duces the processing time from 12.48s of the original ver-
sion using L0 deconvolution to 8.84s. Our method is a
runner-up in the both benchmarks, but our method is much
faster than [13], which spends 707.82s in the same environ-
ment (a 700× 500 image, MATLAB versions).

Our image deblurring framework is especially effective
for handling noisy blurred images due to the robustness of
our deconvolution method against noise (Fig. 3). For a
noisy image, a weak regularization in [22, 13] would am-
plify noise and strong regularization would produce a too
smooth result, prohibiting estimation of an accurate ker-
nel. In our framework, the network can remove strong noise
while preserving image structures, enabling accurate kernel
estimation even in a noisy image.

3.3. Denoising

Our non-blind deconvolution framework is strongly re-
lated to the denoising problem. Denoising methods based



data set noise (σ) BM3D [4] WNNM [6] PCLR [2] PGPD [19] Ours
Set 14 0.039 34.19 34.48 34.46 34.23 34.26

0.12 28.46 28.77 28.70 28.53 29.12
0.20 26.09 26.34 26.31 26.21 26.76
0.27 24.64 24.79 24.78 24.71 25.39

Table 1. Quantitative comparison with noisy images. We uses a 10 layer network. Note that σ = 0.039 = 10
255

= 3.9% in the image range
(0 ∼ 1).

on deep learning usually utilize auto encoders [18, 1] rather
than convolutional networks. We tested whether our net-
work architecture is appropriate for denoising. We used a
nested residual network with 10 layers and trained using
image pairs with four different noise levels. Table 1 shows
that our network also works well for denoising. Our net-
work shows slightly higher performance than other existing
methods except at very low noise levels. Note that the noise
is amplified by Wiener filter in our deconvolution frame-
work, so this characteristic does not affect our deconvolu-
tion performance.
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