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Disclaimer

• Many images and figures in this course note have been copied from 
the papers and presentation materials of previous deblurring and 
deconvolution methods.

• In those cases, the original papers are cited in the slides.
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In This Course…
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15 min Introduction (Seungyong Lee)

- Basic concepts

90 min
Blind deconvolution (Sunghyun Cho)

- Recent popular approaches & benchmarks
- Uniform & non-uniform blur

15 min Break

60 min Non-blind deconvolution (Seungyong Lee)

- Noise, ringing, outliers

45 min

Advanced Issues (Sunghyun Cho)

- Hardware based deblurring
- Defocus / optical lens / object motion / video blurs
- Other issues



Introduction
Blind Deconvolution

Non-blind Deconvolution

Advanced Issues
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blur [bl3:(r)]

• Long exposure

• Moving objects

• Camera motion

– panning shot
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blur [bl3:(r)]

• Often degrades image/video 
quality severely

• Unavoidable under dim light 
circumstances



Various Kinds of Blurs
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Camera shake (Camera motion blur)

Out of focus (Defocus blur) Combinations (vibration & motion, …)

Object movement (Object motion blur)



Camera Motion Blur

• Caused by camera shakes during 
exposure time

– Motion can be represented as a 
camera trajectory
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Object Motion Blur

• Caused by object motions during exposure time
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Defocus Blur

• Caused by the limited depth of field of a camera
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Optical Lens Blur 

• Caused by lens aberration
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Deblurring?

• Remove blur and restore a latent sharp image
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from a given blurred image find its latent sharp image



Deblurring: Old Problem!
• Trott, T., “The Effect of Motion of Resolution”,

Photogrammetric Engineering, Vol. 26, pp. 819-827, 1960.

• Slepian, D., “Restoration of Photographs Blurred by Image Motion”,
Bell System Tech., Vol. 46, No. 10, pp. 2353-2362, 1967.
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Why is it important?

• Image/video in our daily lives

– Sometimes a retake is difficult!
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Why is it important?

• Strong demand for high quality deblurring
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CCTV, car black box Medical imaging Aerial/satellite 
photography

Robot vision



Deblurring

17from a given blurred image find its latent sharp image



Commonly Used Blur Model
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=     *

Blurred image Latent sharp image

Blur kernel
or Point Spread 
Function (PSF)

Convolution 
operator



Blind Deconvolution
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=     *

Blurred image Latent sharp image

Blur kernel
or Point Spread 
Function (PSF)

Convolution 
operator



Non-blind Deconvolution
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=     *

Blurred image Latent sharp image

Blur kernel
or Point Spread 
Function (PSF)

Convolution 
operator



Uniform vs. Non-uniform Blur
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Uniform blur
• Every pixel is blurred in the 

same way
• Convolution based blur model



Uniform vs. Non-uniform Blur

22

Non-uniform blur
• Spatially-varying blur
• Pixels are blurred differently
• More faithful to real camera 

shakes



Most Blurs Are Non-Uniform
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Camera shake (Camera motion blur)

Out of focus (Defocus blur) Combinations (vibration & motion, …)

Object movement (Object motion blur)



Introduction

Blind Deconvolution
Non-blind Deconvolution

Advanced Issues



Introduction

Blind Deconvolution
Non-blind Deconvolution

Advanced Issues

• Introduction
• Recent popular 

approaches

• Non-uniform blur

• Summary



Blind Deconvolution (Uniform Blur)
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=     *

Blurred image Latent sharp image

Blur kernel
or Point Spread 
Function (PSF)

Convolution 
operator



Key challenge: Ill-posedness!
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Blurred 
image

Possible solutions
• Infinite number of solutions 

satisfy the blur model

• Analogous to

100 = ቐ
2 × 50
4 × 25

3 × 33.333…

*

*

*

=



• Parametric blur kernels
– [Yitzhakey et al. 1998], [Rav-Acha and Peleg 2005], …

– Directional blur kernels defined by (length, angle)

In The Past…
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*      



In The Past…

• But real camera shakes are much more complex
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In The Past…

• Parametric blur kernels

– Very restrictive assumption

– Often failed, poor quality
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Blurred image Latent sharp image
* Images from [Yitzhaky et al. 1998]



Nowadays…

• Some successful approaches have been introduced…

– [Fergus et al. SIGGRAPH 2006], [Shan et al. SIGGRAPH 2008],
[Cho and Lee, SIGGRAPH Asia 2009], …

– More realistic blur kernels

– Better quality

– More robust

• Commercial software

– Photoshop CC Shake reduction
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Introduction

Blind Deconvolution
Non-blind Deconvolution

Advanced Issues

• Introduction

• Recent popular 
approaches

• Non-uniform blur

• Summary



Recent Popular Approaches

Maximum Posterior (MAP) based

Variational Bayesian based

Edge Prediction based

Which one is better?
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Recent Popular Approaches

Maximum Posterior (MAP) based

Variational Bayesian based

Edge Prediction based

Which one is better?
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• [Shan et al. SIGGRAPH 2008],
[Krishnan et al. CVPR 2011],
[Xu et al. CVPR 2013], …

• Seek the most probable solution, 
which maximizes a posterior 
distribution

• Easy to understand

• Convergence problem



Recent Popular Approaches

Maximum Posterior (MAP) based

Variational Bayesian based

Edge Prediction based

Which one is better?
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• [Fergus et al. SIGGRAPH 2006],
[Levin et al. CVPR 2009],
[Levin et al. CVPR 2011], …

• Not seek for one most probable 
solution, but consider all possible 
solutions

• Theoretically more robust

• Slow



Recent Popular Approaches

Maximum Posterior (MAP) based

Variational Bayesian based

Edge Prediction based

Which one is better?
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• [Cho & Lee. SIGGRAPH Asia 2009],
[Xu et al. ECCV 2010],
[Hirsch et al. ICCV 2011], …

• Explicitly try to recover sharp edges 
using heuristic image filters

• Fast

• Proven to be effective in practice,
but hard to analyze because of 
heuristic steps



Recent Popular Approaches

Maximum Posterior (MAP) based

Variational Bayesian based

Edge Prediction based

Which one is better?
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• [Shan et al. SIGGRAPH 2008],
[Krishnan et al. CVPR 2011],
[Xu et al. CVPR 2013], …

• Seek the most probable solution, 
which maximizes a posterior 
distribution

• Easy to understand

• Convergence problem



Maximize a joint posterior probability with respect to 𝑘 and 𝑙

MAP based Approaches
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Blur kernel 𝑘

Latent image 𝑙 Blurred image 𝑏

𝑝 𝑘, 𝑙 𝑏
Posterior distribution



Bayes rule:

MAP based Approaches
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𝑝 𝑘, 𝑙 𝑏 ∝ 𝑝 𝑏 𝑙, 𝑘 𝑝 𝑙 𝑝 𝑘
Posterior distribution Likelihood Prior on 𝑙 Prior on 𝑘

Blur kernel 𝑘

Latent image 𝑙 Blurred image 𝑏



Negative log-posterior:

MAP based Approaches
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− log 𝑝 𝑘, 𝑙 𝑏 ⇒ − log 𝑝 𝑏 𝑘, 𝑙 − log 𝑝 𝑙 − log 𝑝 𝑘
⇒ 𝑘 ∗ 𝑙 − 𝑏 2 + 𝜌𝑙 𝑙 + 𝜌𝑘 𝑘

Regularization on 
blur kernel 𝑘

Data fitting term
Regularization on 

latent image 𝑙



Negative log-posterior:

Alternatingly minimize the energy function w.r.t. 𝑘 and 𝑙

MAP based Approaches
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− log 𝑝 𝑘, 𝑙 𝑏 ⇒ − log 𝑝 𝑏 𝑘, 𝑙 − log 𝑝 𝑙 − log 𝑝 𝑘
⇒ 𝑘 ∗ 𝑙 − 𝑏 2 + 𝜌𝑙 𝑙 + 𝜌𝑘 𝑘

Regularization on 
blur kernel 𝑘

Data fitting term
Regularization on 

latent image 𝑙



Negative log-posterior:

Alternatingly minimize the energy function w.r.t. 𝑘 and 𝑙

Ill-posedness:

• Data fitting term has several solutions

• Thus, 𝜌𝑙(𝑙) and 𝜌𝑘(𝑘) are very important for resolving the ill-posedness!

MAP based Approaches
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− log 𝑝 𝑘, 𝑙 𝑏 ⇒ − log 𝑝 𝑏 𝑘, 𝑙 − log 𝑝 𝑙 − log 𝑝 𝑘
⇒ 𝑘 ∗ 𝑙 − 𝑏 2 + 𝜌𝑙 𝑙 + 𝜌𝑘 𝑘

Regularization on 
blur kernel 𝑘

Data fitting term
Regularization on 

latent image 𝑙



MAP based Approaches

43

Input blurred 
image 𝑏

Latent image 𝑙
estimation

- maximizes 
posterior w.r.t. 𝑙

Blur kernel 𝑘
estimation

- maximizes 
posterior w.r.t. 𝑘

Output 𝑙



MAP based Approaches

• Chan and Wong, TIP 1998

– Total variation based priors for estimating a parametric blur kernel

• Shan et al. SIGGRAPH 2008

– First MAP based method to estimate a nonparametric blur kernel

• Krishnan et al. CVPR 2011

– Normalized sparsity measure, a novel prior on latent images

• Xu et al. CVPR 2013

– L0 norm based prior on latent images
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Shan et al. SIGGRAPH 2008

• Carefully designed likelihood & priors
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𝑝 𝑘, 𝑙 𝑏 ∝ 𝑝 𝑏 𝑙, 𝑘 𝑝 𝑙 𝑝 𝑘

Natural image 
statistics based 

prior on 𝑙

Likelihood based on  
intensities & derivatives

Kernel statistics 
based prior on 𝑘



Shan et al. SIGGRAPH 2008

• A few minutes for a small image

• High-quality results
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Shan et al. SIGGRAPH 2008

• Convergence problem

– Often converge to the no-blur solution [Levin et al. CVPR 2009]

– Natural image priors prefer blurry images
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Shan et al. SIGGRAPH 2008 Fergus et al. SIGGRAPH 2006
(variational Bayesian based)
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Xu et al. CVPR 2013

• 𝐿0 norm based prior for latent image 𝑙

48

𝑝 𝑘, 𝑙 𝑏 ∝ 𝑝 𝑏 𝑙, 𝑘 𝑝 𝑙 𝑝 𝑘

𝐿0 norm based prior on 𝑙 ( 𝛻𝑙 0)

• No natural prior, i.e., does not seek for 
naturally-looking latent images

• But, unnatural images with a few sharp 
edges

• Better for resolving the ill-posedness

𝐿0 minimizedNatural image



Xu et al. CVPR 2013

• Better prior & sophisticated optimization methods
 better convergence & better quality
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Recent Popular Approaches

Maximum Posterior (MAP) based

Variational Bayesian based

Edge Prediction based

Which one is better?
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• [Fergus et al. SIGGRAPH 2006],
[Levin et al. CVPR 2009],
[Levin et al. CVPR 2011], …

• Not seek for one most probable 
solution, but consider all possible 
solutions

• Theoretically more robust

• Slow



Variational Bayesian

• MAP
– Find the most 

probable solution

– May converge to a 
wrong solution

• Variational Bayesian
– Approximate the 

underlying distribution 
and find the mean

– More stable

– Slower
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Variational
Bayes

Maximum 
a-Posteriori (MAP)

Pixel intensity

S
c

o
re

MAP v.s. Variational Bayes



Variational Bayesian

• Fergus et al. SIGGRAPH 2006

– First approach to handle non-parametric blur kernels

• Levin et al. CVPR 2009

– Show that variational Bayesian approaches can perform more robustly 
than MAP based approaches

• Levin et al. CVPR 2010

– EM based efficient approximation to variational Bayesian approach
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Fergus et al. SIGGRAPH 2006

• Posterior distribution
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𝑝 𝑘, 𝑙 b ∝ 𝑝 𝑏 𝑘, 𝑙 𝑝 𝑙 𝑝 𝑘



Fergus et al. SIGGRAPH 2006

– Find an approximate distribution by minimizing Kullback-Leibler (KL) 
divergence

– cf) MAP based approach:
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argmin𝐾𝐿(𝑞 𝑘 𝑞 𝑙 𝑞 𝜎−2 𝑝 𝑘, 𝑙 𝑏

approximate distributions for blur kernel 𝑘, 
latent image 𝑙, and noise variance 𝜎2

𝑞 𝑘 , 𝑞 𝑙 , 𝑞 𝜎−2

argmin
𝑘,𝑙

𝑝 𝑘, 𝑙 b



Fergus et al. SIGGRAPH 2006

• First method to estimate a nonparametric blur kernel

• Complex optimization

• Slow: more than an hour for a small image
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Levin et al. CVPR 2010

• Efficient optimization based on EM

• cf) MAP based approach:
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𝑝 𝑘 𝑏 ∝ 𝑝 𝑏 𝑘 𝑝 𝑘
= 𝑙׬ 𝑝 𝑏, 𝑙 𝑘 𝑝 𝑘 𝑑𝑙

= 𝑙׬ 𝑝 𝑏 𝑙, 𝑘 𝑝(𝑙)𝑝 𝑘 𝑑𝑙
Marginalizing over 𝑙

𝑝 𝑘, 𝑙 𝑏 ∝ 𝑝 𝑏 𝑙, 𝑘 𝑝(𝑙)𝑝 𝑘



Levin et al. CVPR 2010
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Input
blurred image 𝑏

E-step
mean & 

covariance of 𝑙

M-step
update 𝑘 using 

mean & 
covariance of 𝑙

Output
mean of 𝑘

Similar to MAP, but also considers covariance of 𝑙



Levin et al. CVPR 2010
State-of-the-art results

Speed:

- 255x255

- 2-4 minutes

- MATLAB

58

Input blurred image Levin et al. CVPR 2010



Recent Popular Approaches

Maximum Posterior (MAP) based

Variational Bayesian based

Edge Prediction based

Which one is better?
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• [Cho et al. SIGGRAPH Asia 2009],
[Xu et al. ECCV 2010],
[Hirsch et al. ICCV 2011], …

• Explicitly try to recover sharp edges 
using heuristic image filters

• Fast

• Proven to be effective in practice,
but hard to analyze because of 
heuristic steps



Edge Prediction based Approaches
• Joshi et al. CVPR 2008

– Proposed sharp edge prediction to estimate blur kernels
– No iterative estimation
– Limited to small scale blur kernels

• Cho & Lee, SIGGRAPH Asia 2009
– Proposed sharp edge prediction to estimate large blur kernels
– Iterative framework
– State-of-the-art results & very fast

• Cho et al. CVPR 2010
– Applied Radon transform to estimate a blur kernel from blurry edge profiles
– Small scale blur kernels

• Xu et al. ECCV 2010
– Proposed a prediction scheme based on structure scales as well as gradient magnitudes

• Hirsch et al. ICCV 2011
– Applied a prediction scheme to estimate spatially-varying camera shakes
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Cho & Lee, SIGGRAPH Asia 2009

• Key idea: blur can be estimated from a few edges

 No need to restore every detail for kernel estimation
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Blurred image Latent image with only a few 
edges and no texture



Cho & Lee, SIGGRAPH Asia 2009
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Input Simple
deconvolution

Fast
Kernel 

Estimation

OutputPrediction

Quickly restore important edges
using simple image filters



Cho & Lee, SIGGRAPH Asia 2009
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Input Simple
deconvolution

Fast
Kernel 

Estimation

OutputPrediction

Quickly restore important edges
using simple image filters

Quickly restore important edges
using simple image filters

Do not need complex priors for the latent image and the blur kernel
 Significantly reduce the computation time



Cho & Lee, SIGGRAPH Asia 2009
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Fast but low quality deconvolution Prediction

Updated kernelPrevious kernel



Cho & Lee, SIGGRAPH Asia 2009
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Prediction
Simple & fast image filtering operations

Thresholding
gradients

Bilateral filtering &
Shock filtering

Fast but low-quality 
deconvolution

Visualized by Poisson 
image reconstruction



Cho & Lee, SIGGRAPH Asia 2009
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Blurry input Deblurring result Blur kernel

• State of the art results
• A few seconds
• 1Mpix image
• in C++



Xu & Jia, ECCV 2010

• Extended edge prediction to handle blur larger than image structures
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Blurred image Fergus et al.
SIGGRAPH 2006

Shan et al.
SIGGRAPH 2008

For this complex 
scene, most methods 
fail to estimate a 
correct blur kernel.
Why?



Xu & Jia, ECCV 2010
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Blur > structures
• Hard to tell which blur 

is caused by which 
edge

• Most method fails

Blur < structures
• Each blurry pixel is 

caused by one edge
• Easy to figure out the 

original sharp 
structure



Xu & Jia, ECCV 2010

69

Structure scale 
aware gradient 

thresholding

Smoothing &
Shock filtering

Deconvolution

Visualized by Poisson 
image reconstruction



Xu & Jia, ECCV 2010
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Blurred image Fergus et al.
SIGGRAPH 2006

Shan et al.
SIGGRAPH 2008

Xu & Jia, ECCV 2010



Recent Popular Approaches

Maximum Posterior (MAP) based

Variational Bayesian based

Edge Prediction based

Which one is better?
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Benchmarks

• Many different methods…

• Which one is the best?

– Quality

– Speed

• Different works report different benchmark results

– Depending on test data

– Levin et al. CVPR 2009, 2010

– Köhler et al. ECCV 2012
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Benchmarks

• Levin et al. CVPR 2009

– Provide a dataset

• 32 test images

• 4 clear images (255x255)

• 8 blur kernels (10x10 ~ 25x25)

• One of the most widely used
datasets

– Evaluate blind deconvolution
methods using the dataset
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Benchmarks

• Levin et al. CVPR 2009

– Counted the number of
successful results

74

0

20

40

60

80

100

1 2
S

u
c

c
e

ss
 R

a
te

Error ratio = 2



Benchmarks

• Cho & Lee, SIGGRAPH Asia 2009

– Comparison based on
Levin et al.’s dataset

– Slightly different
parameter settings
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Benchmarks

• Köhler et al. ECCV 2012
– Record and analyze real camera motions

• Recorded 6D camera shakes in the 3D 
space using markers

• Played back camera shakes using a robot 
arm

– Provide a benchmark dataset based on 
real camera shakes

– Provide benchmark results for recent 
state-of-the-art methods
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Benchmarks

• Köhler et al. ECCV 2012

– Dataset

• 48 test images

• 4 sharp images

• 12 non-uniform camera shakes
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Benchmarks

• Köhler et al. ECCV 2012
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Benchmarks

• Benchmark results depend on

– Implementation details & tricks

– Benchmark datasets

– Parameters used in benchmarks

• But, in general, more recent one shows better quality

• Speed?

– Edge prediction > MAP >> Variational Bayesian
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Introduction

Blind Deconvolution
Non-blind Deconvolution

Advanced Issues

• Introduction

• Recent popular 
approaches

• Non-uniform blur
• Summary



Convolution based Blur Model

• Uniform and spatially invariant blur
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Real Camera Shakes: Spatially Variant!



Uniform Blur Model Assumes
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x & y translational
camera shakes

Planar scene



Real Camera Shakes
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6D real camera motion

Different depths



Real Blurred Image
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Clean

Severe artifacts

Non-uniformly blurred image

Uniform deblurring result



Pixel-wise Blur Model

• Dai and Wu, CVPR 2008

– Estimate blur kernels for every pixel from a single image

– Severely ill-posed

– Parametric blur kernels
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Pixel-wise Blur Model

• Tai et al. CVPR 2008

– Hybrid camera to capture hi-res image & low-res video

– Estimate per-pixel blur kernels using low-res video

87time

Hi-res. 
image

Low-res. 
video



Patch-wise Blur Model

• Sorel and Sroubek, ICIP 2009

– Estimate per-patch blur kernels from a blurred image and an 
underexposed noisy image
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Patch-wise Blur Model

• Hirsch et al. CVPR 2010

– Efficient filter flow (EFF) framework

– More accurate approximation than the naïve patch-wise blur model

• Harmeling et al. NIPS 2010

– Estimate per-patch blur kernels based on EFF from a single image
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Patch-wise Blur Model

• Approximation

– More patches more accurate

• Computationally efficient

– Patch-wise uniform blur

– FFTs can be used

• Physically implausible blurs

– Adjacent blur kernels cannot be
very different from each other
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Projective Motion Path

• Tai et al. TPAMI 2011

– Homography based blur model

– Non-blind deconvolution method
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=෍

𝑖=1

𝑁

𝑤𝑖𝑃𝑖

Homography
Blurred image Latent image

Weight
Blurred image Tai et al. TPAMI 2011



Projective Motion Path

• Tai et al. TPAMI 2011
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=෍

𝑖=1

𝑁

𝑤𝑖𝑃𝑖

Homography
Blurred image Latent image

weight
Planar scene

6D real camera 
motion

Pros
• 6 DoF camera motions
• Globally consistent & physically plausible



Projective Motion Path

• Tai et al. TPAMI 2011
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=෍

𝑖=1

𝑁

𝑤𝑖𝑃𝑖

Homography
Blurred image Latent image

weight
Planar scene

6D real camera 
motion

Pros
• 6 DoF camera motions
• Globally consistent & physically plausible

Cons
• Slow computation

• Can’t use FFTs
• Didn’t provide blur kernel estimation



Projective Motion Path

• Cho et al. PG2012

– Blind deconvolution from multiple blurred images

– 6 DoF camera motions

– Try to estimate homographies one by one

94
Input blurred images Deblurred image



Projective Motion Path

• Cho et al. PG2012

– Sensitive to noise

– Convergence problem due to highly non-linear optimization process

95
Input blurred images Deblurred image



• 3 DoF camera motions
• Roll, yaw, pitch 𝜃𝑋, 𝜃𝑌 , 𝜃𝑍
• Discretize 3D motion parameter space
 3D blur kernel

• Much easier to use with existing blind 
deconvolution frameworks

Projective Motion Path

• Whyte et al. CVPR 2010
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=෍

𝑖=1

𝑁

𝑤𝑖𝑃𝑖

Homography with only
x, y, z rotations

Blurred image Latent image



Projective Motion Path

• Whyte et al. CVPR 2010

– Blind deconvolution from a single image
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Blurry Fergus et al. – uniformWhyte et al. – non-uniform



Projective Motion Path

• Gupta et al. ECCV 2010
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=෍

𝑖=1

𝑁

𝑤𝑖𝑃𝑖

Blurred image Latent image

• 3 DoF camera motions
• x, y translations & in-plane rotation
• Discretize 3D motion parameter space
 3D blur kernel

• Much easier to use with existing blind 
deconvolution frameworks

tY tX

Homography with only
in-plane rotation and x,y translations



Projective Motion Path

• Gupta et al. ECCV 2010
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Blurred image Gupta et al. ECCV 2010 Shan et al. SIGGRAPH 2008



More Efficient Blur Model

• Hirsch et al. ICCV 2011

– Propose a hybrid model
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Projective Motion Path:
Globally consistent & 
physically plausible

Patch-wise Blur Model:
Computationally efficient



More Efficient Blur Model

• Hirsch et al. ICCV 2011
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3D blur kernel based on 
projective motion chain

2D local blur kernels

Sharp image Blurred image

Patch-wise blur using 
Fourier transforms

Globally 
consistent & 

physically 
plausible

Computationally 
efficient



More Efficient Blur Model

• Hirsch et al. ICCV 2011
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Blurred image Xu & Jia, ECCV 2010
(uniform blur)

Gupta et al. ECCV 2010
(non-uniform)

Hirsch et al. ICCV 2011
(non-uniform)



More Efficient Blur Model
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Benchmark [Köhler et al. ECCV 2012]
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Due to high dimensionality, 
spatially-varying blur 
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Summary
• Different blur models

• More realistic than uniform blur model
• Still approximations

– Real camera motions: 6 DoF + more (zoom-in, depth, etc…)

• High dimensionality
– Less stable & slower than uniform blur model
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Patch based
Efficient but no global constraint

Projective Motion Path
Globally consistent but inefficient

Hybrid
Efficient & globally consistent



Introduction

Blind Deconvolution
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Remaining Challenges

• All methods still fail quite often

• Noise

• Outliers

• Non-uniform blur

• Limited amount of edges

• Speed…

• Etc…
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Failure example of Photoshop Shake Reduction



Photoshop Shake Reduction

• Based on [Cho and Lee, SIGGRAPH ASIA 2009]

• Improved noise handling

• Automatic kernel size estimation

• Automatic region suggestion
for blur kernel estimation

• DEMO
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Non-blind Deconvolution (Uniform Blur)
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=     *

Blurred image Latent sharp image

Blur kernel Convolution 
operator



Non-blind Deconvolution

• Key component in many deblurring systems

– For example, in MAP based blind deconvolution:
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Input blurred 
image 𝑏

Latent image 𝑙
estimation

Blur kernel 𝑘
estimation

Output 𝑙

Non-blind deconvolution
There can be additional final 
non-blind deconvolution for 

the final output



Non-blind Deconvolution

113

 Wiener filter

 Richardson-Lucy deconvolution

 Rudin et al. Physica 1992

 Bar et al. IJCV 2006

 Levin et al. SIGGRAPH 2007

 Shan et al. SIGGRAPH 2008

 Yuan et al. SIGGRAPH 2008

 Harmeling et al. ICIP 2010

 Etc…



Ill-Posed Problem

• Even if we know the true blur kernel, we cannot restore the latent 
image perfectly, because:

• Loss of high-freq info & noise ≈ denoising & super-resolution
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= * +

Blur destroys
High-freq info

Noise



Ill-Posed Problem

• Deconvolution amplifies noise 
as well as sharpens edges

• Ringing artifacts

– Inaccurate blur kernels, outliers 
cause ringing artifacts
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Classical Methods

• Popular methods
– Wiener filtering

– Richardson-Lucy deconvolution

– Constrained least squares

• Matlab Image Processing Toolbox
– deconvwnr, deconvlucy, deconvreg

• Simple assumption on noise and 
latent images
– Simple & fast

– Prone to noise & artifacts
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Natural Image Statistics

• Non-blind deconvolution: ill-posed problem

• We need to assume something on the latent image to constrain the 
problem.
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= * +



Natural Image Statistics

• Natural images have a heavy-tailed distribution on gradient 
magnitudes

– Mostly zero & a few edges

– Levin et al. SIGGRAPH 2007, Shan et al. SIGGRAPH 2008,
Krishnan & Fergus, NIPS 2009
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Natural Image Statistics

• Levin et al. SIGGRAPH 2007

– Propose a parametric model for natural image priors based on image 
gradients

120

L
o

g
 p

ro
b

xx

Gaussian: -x2

Laplacian: -|x|
-|x|0.5

-|x|0.25

Derivative histogram from a 
natural image

Parametric models

Proposed prior

log 𝑝 𝑥 = −෍

𝑖

𝛻𝑥𝑖
𝛼

where:
• 𝑥: image
• 𝛼: model parameter, 𝛼 < 1



Natural Image Statistics

• Levin et al. SIGGRAPH 2007
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𝑙 = argmin
𝑙

𝑘 ∗ 𝑙 − 𝑏 2 + 𝜆σ𝑖 𝛻𝑙𝑖
𝛼 𝛼 < 1

_
2

+

_ +
2

?

?

High 

Low 
Equal convolution error

*

*

Data term Prior



Natural Image Statistics

• Levin et al. SIGGRAPH 2007
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Input Richardson-Lucy Gaussian prior

“spread” gradients

Sparse prior

“localizes” gradients

෍

𝑖

𝛻𝑙𝑖
2 ෍

𝑖

𝛻𝑙𝑖
0.8



Natural Image Statistics

• Krishnan & Fergus, NIPS 2009

– Minimizes the same energy function:

– But much faster

– Efficient optimization based on half-quadratic scheme

123

𝑙 = argmin
𝑙

𝑘 ∗ 𝑙 − 𝑏 2 + 𝜆σ𝑖 𝛻𝑙𝑖
𝛼 𝛼 < 1



Natural Image Statistics

• Krishnan & Fergus, NIPS 2009
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High-order Natural Image Priors

• Patches, large neighborhoods, …

• Effective for various kinds of image restoration problems

– Denoising, inpainting, super-resolution, deblurring, …
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High-order Natural Image Priors

• Schmidt et al. CVPR 2011

– Fields of Experts

• Zoran & Weiss, ICCV 2011

– Trained Gaussian mixture model for natural image patches

• Schuler et al. CVPR 2013

– Trained Multi-layer perceptron to remove artifacts and to restore sharp 
patches

• Schmidt et al. CVPR 2013

– Trained regression tree fields for 5x5 neighborhoods
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High-order Natural Image Priors

• Zoran & Weiss, ICCV 2011

– Gaussian Mixture Model (GMM) learned from natural images
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Natural images Collected patches GMM

Collect
patches K-means



High-order Natural Image Priors

• Zoran & Weiss, ICCV 2011

– Given a patch, we can compute its likelihood based on the GMM.

– Deconvolution can be done by solving:

argmin
𝑙

𝑘 ∗ 𝑙 − 𝑏 2 − 𝜆෍

𝑖

log 𝑝 𝑙𝑖
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Log-likelihood of a patch 𝑙𝑖 at 𝑖-th pixel 
based on GMM



High-order Natural Image Priors

• Zoran & Weiss, ICCV 2011
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Denoising Deblurring

Blurred image Krishnan & Fergus
PSNR: 26.38

Zoran & Weiss
PSNR: 27.70
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Ringing Artifacts

• Wave-like artifacts around strong edges

• Caused by

– Inaccurate blur kernels

– Nonlinear response curve

– Etc…
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Ringing Artifacts

• Noise

– High-freq

– Independent and identical 
distribution

– Priors on image gradients work 
well

• Ringing

– Mid-freq

– Spatial correlation

– Priors on image gradients are 
not very effective
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Ringing Artifacts

• Yuan et al. SIGGRAPH 2007

– Residual deconvolution & de-ringing

• Yuan et al. SIGGRAPH 2008

– Multi-scale deconvolution framework based on residual deconvolution
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Blurred image Richardson-Lucy Yuan et al. SIGGRAPH 2008



Residual Deconvolution [Yuan et al. SIGGRAPH 2007, 2008]
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Blurred image Guide image Residual deconvolution result 
with less ringing artifacts

• Relatively accurate edges, but less details
• Obtained from a deconvolution result from a smaller scale



Residual Deconvolution [Yuan et al. SIGGRAPH 2007, 2008]
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*-

Deconvolution

+

Blurred image Guide image Residual blur

Guide image Detail layer Result



Residual Deconvolution [Yuan et al. SIGGRAPH 2007, 2008]

• Residual deconvolution
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Blurred image Deblurred image

Residual blur Detail layer = 
deblurred residual

Guide image
+ detail layer

Severe ringing

Less ringing

Guide image



Progressive Inter-scale & Intra-scale 
Deconvolution [Yuan et al. SIGGRAPH 2008]

• Progressive inter-scale & intra-scale deconvolution

138
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Blurred image Richardson-Lucy TV regularization

Levin et al. SIGGRAPH 2007 Wavelet regularization Yuan et al. SIGGRAPH 2008
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Outliers

• A main source of severe ringing artifacts
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Blurred image with outliers Deblurring result
[Levin et al. SIGGRAPH 2007]



Outliers

• Saturated pixels caused by limited dynamic range of sensors
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Incoming light to 
sensors
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Dynamic range 
of a camera

Information 
loss!

Blurred image [Levin et al. 2007]



Outliers

• Hot pixels, dead pixels, compression artifacts, etc…
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Hot pixel
Blurred image with outliers [Levin et al. 2007]



Outlier Handling

• Most common blur model:

𝑏 = 𝑘 ∗ 𝑙 + 𝑛
Equivalent to
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Latent image

𝑙
Blurred image

𝑏
Gaussian noise 

𝑛
Motion blur

𝑘 ∗ 𝑙

small amount of Gaussian noise



Outlier Handling

• An energy function derived from this model:

𝐸 𝑙 = 𝑘 ∗ 𝑙 − 𝑏 2 + 𝜌(𝑙)

• More robust norms to outliers

– 𝐿1-norm, other robust statistics…

𝐸 𝑙 = 𝑘 ∗ 𝑙 − 𝑏 1 + 𝜌(𝑙)
– Bar et al. IJCV 2006, Xu et al. ECCV 2010, …
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𝐿2-norm based data term: 
known to be vulnerable to 

outliers

Regularization term on 
a latent image 𝑙



Outlier Handling

• 𝐿1-norm based data term

– Simple & efficient

– Effective on salt & pepper noise

– Not effective on saturated pixels
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𝐿2-norm based data term

𝐿1-norm based data term



Cho et al. ICCV 2011

• More accurate blur model reflecting outliers
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Blurred 
image

𝑏

Noise
& outliers

𝑐 𝑘 ∗ 𝑙 + 𝒏

Clipping

𝑐(𝑘 ∗ 𝑙)

Motion blur

𝑘 ∗ 𝑙

Latent image

𝑙

𝑐(𝑢) = ቐ
𝑢 if 𝑢 ∈ DynamicRange

LowerBound if 𝑢 < LowerBound
UpperBound if 𝑢 > UpperBound



Cho et al. ICCV 2011

• Classification mask
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Blurred image 𝑏 Classification mask 𝑚

𝑚 𝑥 = ቊ
1 if 𝑏(𝑥) is an inlier

0 if 𝑏 𝑥 is an outlier



Cho et al. ICCV 2011

• MAP estimation
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Given 𝑏 & 𝑘, find the most probable 𝑙

= argmax
𝑙

෍

𝑚∈𝑀

𝑝 𝑏 𝑚, 𝑘, 𝑙 𝑝(𝑚|𝑘, 𝑙)𝑝(𝑙)

𝑙𝑀𝐴𝑃 = argmax
𝑙

𝑝(𝑙|𝑏, 𝑘)

Classification 
mask 𝑚



Cho et al. ICCV 2011

• EM based optimization
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M-step updates 𝑙
(Deconvolution using inliers)

E-step computes 𝐸 𝑚
(Outlier detection)
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Blurred image

L1-norm based deconv. [Harmeling et al. 2010] [Cho et al. ICCV 2011]

[Levin et al. 2007]Blurred image
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Blurred image

L1-norm based deconv. [Harmeling et al. 2010] [Cho et al. ICCV 2011]

[Levin et al. 2007]Blurred image
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Summary & Remaining Challenges
• Ill-posed problem - Noise & blur
• Noise

– High-freq & unstructured
– Natural image priors

• Ringing
– Mid-freq & structured
– More difficult to handle

• Outliers
– Cause severe ringing artifacts
– More accurate blur model

• Speed
– More complex model  Slower

• Many source codes are available on the authors’ website
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Hardware based Approaches

• To estimate blur kernels

• To restore sharp images better

[Raskar et al., SIGGRAPH 2006]

Coded exposure using fluttered shutter

[Tai et al., CVPR 2008]

High-speed low-resolution camera &

low-speed high-resolution camera

[Joshi et al., SIGGRAPH 2010]

Gyro sensor + accelerometer



Coded Exposure

• Raskar et al. SIGGRAPH 2006
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Traditional Camera

Shutter is OPEN

Our Camera

Flutter Shutter



Coded Exposure

• Raskar et al. SIGGRAPH 2006
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Traditional camera
Completely destroys high-freq info

Fluttered shutter
High-freq info is preserved



Coded Exposure

• Raskar et al. SIGGRAPH 2006
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Traditional camera
High-freq details couldn’t be restored 

accurately

Fluttered shutter
High-freq details are restored accurately



Hybrid Camera

• Tai et al. CVPR 2008
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Low-res Camera
with high frame rate
(100 fps)

High-res Camera
with low frame rate
(25 fps)

Beam-splitter



Hybrid Camera

• Tai et al. CVPR 2008

– Deblur hi-res image using low-res & high frame rate video

162time

Hi-res. 
image

Low-res. 
video
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Input [Shan et. al. ICCV’07] [Ben-Ezra et. al. CVPR’03]

Back Projection Our Result Ground Truth



Gyro Sensors + Accelerometers

• Joshi et al. SIGGRAPH 2010
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• 3 gyro sensors
• 3 accelerometers
• 6 DoF camera motion



Blurred image

165



Deblurred image
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Defocus blur
• Shallow depth of field

• Often intentionally used for 
visually aesthetic pictures

• However, a user may focus a 
wrong spot by mistake

• Spatially variant

– Dependent on depths



Bando & Nishita PG 2007

• Segmentation + local blur estimation

169

Blurry input Segmentation + local blur estimation 
result



Bando & Nishita PG 2007
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Input image Shallower depth-of-field Refocused on the orange crayon

Digital Refocusing



Coded Aperture [Levin et al. SIGGRAPH 2007]

• Coded aperture to more accurately estimate local blur kernels
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Conventional aperture

Coded aperture

Smaller scale Correct scale Larger scale



Coded Aperture [Levin et al. SIGGRAPH 2007]
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Input blurred image All focused result



Coded Aperture [Levin et al. SIGGRAPH 2007]
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Conventional aperture:
ringing due to incorrect blur estimation

Coded aperture



Coded Aperture [Levin et al. SIGGRAPH 2007]
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Refocusing
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Optical Lens Blur
• Lens imperfection

• Spatially-varying blur

• Image boundaries get blurrier



Calibration based Approach [Kee et al. ICCP 2011]

• Calibration step estimates spatially-varying blur using a test chart
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Test chart
Capture it

Captured chart Estimated blur kernels



Calibration based Approach [Kee et al. ICCP 2011]
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Blurry input Restored Blur kernels



No Calibration [Schuler et al. ECCV 2012]

• Assume blur kernels rotationally symmetric to the image center

• Use an edge prediction framework for estimating blur kernels

Latent imageBlurred image

Rotational symmetric kernel basis

Blur parameters



No Calibration [Schuler et al. ECCV 2012]
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Schuler et al. ECCV 2012Blurred image (captured in 1940)
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Object Motion Blur
• Due to object motions

• Most challenging

• Spatially-varying blur

– Much more arbitrary than 
spatially-varying camera shakes

• Limited information

– Small portions of an image are 
blurred



Software based Approaches

• Severely ill-posed problem

• Segmentation & blur kernel estimation

• Often impose very limited assumptions

– Parametric linear blur kernels

– Only one moving object
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[Levin, NIPS 2006]
Blur estimation and segmentation 

based on natural image prior

[Jia, CVPR 2007]
Blur estimation based on alpha matting [Charkrabarti et al., CVPR 2010]

Blur estimation & segmentation 
from a single image

[Cho et al. ICCV 2007]
Blur estimation & segmentation
using multiple blurred images



Hardware based Approaches
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[Tai et al., CVPR 2008]

High-speed low-resolution camera &

low-speed high-resolution camera

Input video sequence

Alpha matte of the moving object

Deblurred video frames
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Video Deblurring
• Camera shakes

• Moving objects

• Temporal coherence



Video Deblurring
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[Li et al. CVPR 2010]
Generate a sharp panorama image from 

blurred video frames

[Cho et al. SIGGRAPH 2012]
Generate a sharp video using patch-based 

synthesis



Video Deblurring
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[Li et al. CVPR 2010]
Generate a sharp panorama image from 

blurred video frames

[Cho et al. SIGGRAPH 2012]
Generate a sharp video using patch-based 

synthesis



Shaky Video

186



After Stabilizing the Video…
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Motion Blur in Video Frames
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Shaky video



Motion Blur in Video Frames
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After video stabilization



Video Deblurring [Cho et al. SIGGRAPH 2012]

190



Comparison

191Cho et al. SIGGRAPH 2012

Single image deblurringBlurred frame

Multiple image deblurring



Video Deblurring [Cho et al. SIGGRAPH 2012]
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• Find sharp patches from neighboring frames  blend them together
– Patch search taking account of spatially varying blur 

– No deconvolution  no deconvolution artifacts

– Local window based patch search  depth difference & moving objects

– Patches from nearby frames  Temporal coherence

 Reliable & robust

Blurred frame Neighboring frameRestored frame



Video Deblurring [Cho et al. SIGGRAPH 2012]
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Stabilization only

Video deblurring + stabilization



Video Deblurring [Cho et al. SIGGRAPH 2012]
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Stabilization only

Video deblurring + stabilization
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Outliers & Noise

• Blurred images often have significant amount of noise & outliers

– Low-lighting environment

– But, relatively less explored

• Non-blind deconvolution

– Cho et al. ICCV 2012 – Outlier handling

• Blind deconvolution

– Tai & Lin, CVPR 2012
Nonlocal denoising & deblurring

– Zhong et al. CVPR 2013
Noise handling using directional filters
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Cho & Lee
SIGGRAPH Asia 2009

Cho et al.
CVPR 2011

Levin et al.
CVPR 2011

Zhong et al.
CVPR 2013



Nonlinear Camera Response Functions

• Nonlinear Camera Response Functions (CRF)

– Cameras apply CRFs to captured scene irradiance to produce an image

– To mimic human visual perception

– To improve the visual aesthetics
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Nonlinear CRF

Scene irradiance Image intensityIn-camera processing



Nonlinear Camera Response Functions

• Common blur model:

𝑏 = 𝑘 ∗ 𝑙

• Previous methods often fail to 
estimate a blur kernel & produce 
severe ringing

• Kim et al. CVPR 2012
– Estimate a CRF from a blurred image
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Due to CRF
Blurred image

Without CRF handling Kim et al. CVPR 2012



Other Information

• Light streaks?

– Light streaks show the shape of the blur kernel

• Can be a very useful information about blur kernels

– But, most methods don’t use them, and fail when they present
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Blurry image with light streaks Photoshop Shake Reduction



Quality Metric

• Different methods may produce different results with different artifacts

• Which one is better?

• Liu et al. SIGGRAPH Asia 2013

– No-reference metric for evaluating the quality of motion deblurring
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Blurred image
Different deblurring results

Liu et al.
Fusion using the 

quality metric



Domain Specific Deblurring

• Exploit domain specific properties

– Text images, medical images, etc
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[Cho et al. ECCV 2012] Text image deblurring using text-specific properties



Computational Time

• Cameras these days

– iPhone 5: 8 Mega pixels

– Canon EOS 60D: 18 Mega pixels

• Many blind/non-blind deblurring methods

– more than several minutes for an 1 Mega pixel image

• Parallelizing operations on pixels

• Cloud computing

202



Applications

203

Robotics - [Lee et al. ICCV 2011] SLAM & Deblurring

CCTV & Car black box
Satellite & aerial photographs

Medical imaging

Historical images Smart phones
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