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Abstract. Numerous learning-based approaches to single image deblur-
ring for camera and object motion blurs have recently been proposed.
To generalize such approaches to real-world blurs, large datasets of real
blurred images and their ground truth sharp images are essential. How-
ever, there are still no such datasets, thus all the existing approaches
resort to synthetic ones, which leads to the failure of deblurring real-
world images. In this work, we present a large-scale dataset of real-world
blurred images and ground truth sharp images for learning and bench-
marking single image deblurring methods. To collect our dataset, we
build an image acquisition system to simultaneously capture geometri-
cally aligned pairs of blurred and sharp images, and develop a postpro-
cessing method to produce high-quality ground truth images. We analyze
the effect of our postprocessing method and the performance of existing
deblurring methods. Our analysis shows that our dataset significantly
improves deblurring quality for real-world blurred images.

1 Introduction

Images captured in low-light environments such as at night or in a dark room
often suffer from motion blur caused by camera shakes or object motions as the
camera requires a long exposure time. Such motion blur severely degrades the
image quality, and the performance of other computer vision tasks such as object
recognition. Thus, image deblurring, a problem to restore a sharp image from a
blurred one, has been extensively studied for decades [12, 38, 7, 45, 46, 33, 40, 6].

Recently, several deep learning-based approaches [31, 42, 21, 22] have been
proposed and shown a significant improvement. To learn deblurring of real-world
blurred images, they require a large-scale dataset of real-world blurred images
and their corresponding ground truth sharp images. However, there exist no such
datasets so far due to difficulties involved with acquisition of real-world data,
which forces the existing approaches to resort to synthetic datasets, e.g., the
GoPro dataset [31]. As a result, they do not generalize well to real-world blurred
images as will be shown in our experiments.

The main challenge in developing a real-world blur dataset is that the con-
tents of a blurred image and its ground truth sharp image should be geometri-
cally aligned under the presence of blur. This means that the two images should
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be taken at the same camera position, which is difficult as the camera must
be shaken to take a blurred image. Besides, a real-world blur dataset for image
deblurring should satisfy the following requirements. First, the dataset should
cover the most common scenarios for camera shakes, i.e., low-light environments
where motion blurs most frequently occur. Second, the ground truth sharp im-
ages should have as little noise as possible. Lastly, the blurred and ground truth
sharp images should be photometrically aligned.

In this paper, we present the first large-scale dataset of real-world blurred
images for learning and benchmarking single image deblurring methods, which
is dubbed RealBlur. Our dataset consists of two subsets sharing the same image
contents, one of which is generated from camera raw images, and the other from
JPEG images processed by the camera ISP. Each subset provides 4,556 pairs
of blurred and ground truth sharp images of 232 low-light static scenes. The
blurred images in the dataset are blurred by camera shakes, and captured in
low-light environments such as streets at night, and indoor rooms to cover the
most common scenarios for motion blurs. To tackle the challenge of geometric
alignment, we build an image acquisition system that can simultaneously cap-
ture a pair of blurred and sharp images that are geometrically aligned. We also
develop a postprocessing method to produce high-quality ground truth images.

With the RealBlur dataset, we provide various analyses. We analyze the ac-
curacy of our geometric alignment and its effect on learning of image deblurring.
We evaluate existing synthetic datasets as well as ours and seek for the best
strategy for training. We also benchmark existing deblurring methods and an-
alyze their performance. Our analysis shows that the RealBlur dataset greatly
improves the performance of deep learning-based deblurring methods on real-
world blurred images. The analysis also shows that networks trained with our
dataset can generalize well to dynamic scenes with moving objects.

2 Related Work

Single-image deblurring. Traditional deblurring approaches [12, 38, 7, 45, 46,
33, 40, 6, 24, 25] often model image blur using a convolution operation as:

b = k � l + n (1)

where b, l, and n denote a blurry image, a latent image, and additive noise,
respectively. � is a convolution operator, and k is a blur kernel. Based on this
model, previous approaches solve an inverse problem to find k and l from b.
Unfortunately, they often fail to handle real-world blurred images because of
their restrictive blur model and the ill-posedness of the inverse problem. To deal
with more realistic blur, several approaches with extended blur models have been
proposed, but their performance is still limited due to the inherent ill-posedness
of the inverse problem [18, 44, 8, 14, 17, 19].

Recent deep learning-based approaches [31, 42, 21, 22] overcome such limita-
tions by learning a mapping from a blurry image to its corresponding sharp image
from a large collection of data. However, their performance is limited due to the
lack of real-world blur datasets. Recently, a few unsupervised learning-based ap-
proaches have been proposed, which do not require geometrically-aligned blurred
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(a) GoPro dataset (b) Magnified 
view of (a)

(c) GoPro dataset (d) Magnified 
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(e) Real-world low-
light blurred image

Fig. 1. The synthetically blurred images in (a) and (c) in the GoPro dataset [31] are
captured in well-lit environments and have unrealistic discontinuous blurs. Blending
sharp images cannot mimic saturated light streaks often observed in real-world blurred
images like (e) due to the limited dynamic range of sharp images.

and sharp images for learning [28, 27]. However, they are limited to specific do-
mains, e.g., faces and texts, as they rely on generative adversarial networks [13].

Deblurring datasets. Several datasets have been proposed along with deblur-
ring methods. However, most of them are designed not for learning but for evalu-
ation of deblurring algorithms. Levin et al. [24] proposed a dataset of 32 images
blurred by real camera shakes. Sun et al. [40] introduced a synthetic dataset
generated from 80 natural images and the eight blur kernels. Köhler et al. [20]
introduced a dataset of 48 blurred images with spatially-varying blur caused by
real camera shakes. All these datasets are too small to train neural networks, and
unrealistic as they are either synthetically generated or captured in controlled
lab environments. Lai et al. [23] introduced a dataset of 100 real blurred images
for benchmarking deblurring methods. However, their dataset does not provide
ground truth sharp images, which are essential for learning image deblurring.

Recently, several synthetic datasets for learning image deblurring have been
proposed [31, 30, 32, 39, 51]. To synthetically generate blurred images, they cap-
ture sharp video frames using a high-speed camera, and blend them. The re-
sulting images have blurs caused by both spatially-varying camera shakes and
object motions. However, due to the extremely short exposure times of the high-
speed camera, all the sharp frames were captured in well-lit environments, which
are unrealistic for motion blurs to occur. Also, blending sharp frames cannot
perfectly mimic the long exposure time of real blurry images because of tempo-
ral gaps between adjacent video frames and the limited dynamic range. Thus,
networks trained with them do not generalize well to real-world blurry images
captured in low-light environments as will be shown in Sec. 5.

Hybrid imaging. Our image acquisition system is inspired by previous hybrid
imaging approaches. Ben-Ezra and Nayar [2] proposed an hybrid camera sys-
tem equipped with an additional high-speed low-resolution camera to capture
the camera motion. Tai et al. [41] extended the approach for spatially-varying
blur. Li et al. [26] proposed a hybrid camera system for motion deblurring and
depth map super-resolution. Yuan et al. [47] and Šorel et al. [52] capture a pair
of noisy and blurred images using exposure bracketing for accurate blur kernel
estimation. However, all these approaches are designed for blur kernel estima-
tion, and provide neither high-quality ground-truth images nor sophisticated
postprocessing methods like ours.
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Fig. 2. Our image acquisition system and its diagram.

3 Image Acquisition System and Process

3.1 Image Acquisition System

To capture blurred and sharp images simultaneously, we built a dual camera
system (Fig. 2). Our system consists of a beam splitter and two cameras so that
the cameras can capture the same scene. The cameras and beam splitter are
installed in an optical enclosure to protect them from light coming from outside
the viewing direction. One camera captures a blurry image with a low shutter
speed, while the other captures a sharp image with a high shutter speed. The
two cameras and their lenses are of the same models (Sony A7RM3, Samyang
14mm F2.8 MF). The cameras are synchronized by a multi-camera trigger to
capture images simultaneously. Our system is designed to use high-end mirror-
less cameras with full-frame sensors and wide-angle lenses based on the following
reasons. First, we want to reflect the in-camera processing of conventional cam-
eras into our dataset because blurry JPEG images processed by camera ISPs
are more common than raw images. Second, full-frame sensors and wide-angle
lenses can gather a larger amount of light than small sensors and narrow-angle
lenses so they can more effectively suppress noise. Wide-angle lenses also help
avoid defocus blur that may adversely affect learning of motion deblurring.

The cameras are physically aligned as much as possible. To evaluate the
alignment of the cameras, we conducted stereo calibration [50, 15] and estimated
the baseline between the cameras. The estimated baseline is 8.22 mm, which
corresponds to disparity of less than four pixels for objects more than 7.8 meters
away in the full resolution, and less than one pixel in our final dataset, which
contains images downsampled by 1/4.

3.2 Image Acquisition Process

Using our image acquisition system, we captured blurred images of various indoor
and outdoor scenes. For each scene, we first captured a pair of two sharp images,
referred to as a reference pair, which will be used for geometric and photometric
alignment of sharp and blurred images in the postprocessing step. We then
captured 20 pairs of blurred and sharp images of the same scene to increase
the amount of images and the diversity of camera shakes. For reference pairs,
we set the shutter speed to 1/80 sec. and adjusted ISO and the aperture size
to avoid blur caused by camera shakes. Then, we used the same camera setting
for one camera to capture sharp images, while we set the shutter speed of the
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Fig. 3. Blurred images in the RealBlur dataset. Our dataset consists of both dim-lit
indoor and outdoor scenes where motion blur commonly occurs.
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Fig. 4. Overall procedure of our postprocessing.

other camera to 1/2 sec. and the ISO value 40 times lower than the reference
ISO value to capture blurred images of the same brightness. To capture diverse
camera shakes, we simply held our system still for some images, and randomly
moved the system for the others. In both cases, blurred images are obtained due
to the long exposure time. We captured 4,738 pairs of images of 232 different
scenes including reference pairs. We captured all images both in the camera
raw and JPEG formats, and generated two datasets: RealBlur-R from the raw
images, and RealBlur-J from the JPEG images. Fig. 3 shows samples of the
blurred images in the RealBlur dataset.

4 Postprocessing

The captured image pairs are postprocessed for noise reduction, and geometric
and photometric alignment. Fig. 4 shows an overview of our postprocessing. We
first briefly explain the postprocessing procedure for RealBlur-R. For each pair
of sharp and blurred images, we first apply white balance and demosaicing. For
white balance, we use the white balance parameters obtained from the cameras.
For demosaicing, we use the adaptive homogeneity-directed demosaicing [16]3.
As we use a beam splitter and an optical enclosure as well as wide-angle lenses,
images have invalid areas along the boundaries that capture outside the beam
splitter or inside the optical enclosure. Thus, we crop out such regions. We
then correct lens distortions in the cropped images using distortion parameters
estimated in a separate calibration step [15]. Then, we downsample the images,
and perform denoising to the downsampled sharp image. Finally, we perform
geometric and photometric alignment. The sizes of the images from the cameras,
after cropping, and after downsampling are 7952� 5304, 2721� 3094, and 680�
3 We used the libraw library for decoding and demosaicing raw images.
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Fig. 5. Geometric alignment. Each alignment result is shown as a stereo-anaglyph
image, where the sharp and blurred images are visualized in red and cyan, respectively,
and overlaid to each other. The blurred image has slightly non-uniform blur due to
camera shakes so the shapes of cyan light streaks differ across different regions.

773, respectively. For RealBlur-J, we follow the same procedure except for white
balance, demosaicing, and denoising, as they are performed by camera ISPs.
In the following, we explain the downsampling, denoising, and geometric and
photometric alignment steps in more detail.

4.1 Downsampling & Denoising

In the downsampling step, we downsample images by 1/4 for each axis. The
downsampling has three purposes. First, while the image resolutions of recent
cameras are very high, even the latest deep learning-based deblurring methods
cannot handle such high-resolution images. Second, as we use high ISO values
to capture sharp images, they have amplified noise, which can adversely affect
training and evaluation of deblurring methods using the sharp images. Down-
sampling can reduce such noise as it averages nearby pixel intensities. Third,
as the alignment of the cameras in our image acquisition system is not perfect,
there can exist a small amount of parallax between sharp and blurred images,
which can also be effectively reduced by downsampling.

While we reduce noise by downsampling, the downsampled images may still
have remaining noise. To further reduce noise, we apply denoising to the sharp
images in the denoising step. For each sharp image, we estimate the amount
of noise using Chen et al.’s method [5]. We then apply the BM3D denoising
method [10] setting the noise level parameter to 1.5 times the estimated noise
level. We denoise only sharp images. Regarding blurred images, noise is not an
issue because it is natural for them to have noise as they are supposed to be
captured in low-light conditions, and also because networks trained with noisy
blurred images will simply learn both denoising and deblurring.

4.2 Geometric Alignment

Although our image acquisition system has physically well-aligned cameras, there
still exists some amount of geometric misalignment (Fig. 5(a)). Furthermore, the
positions of the cameras may slightly change over time due to camera shakes. To


