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Abstract

A surface light field is a function that gives the colors
of each object point viewed from different directions. An
object representation with a surface light field provides a
nice structure for 3D photography. This paper presents a
feature-based morphing technique for two objects equipped
with surface light fields. The technique consists of geome-
try morphing and in-between light field mapping. Geometry
morphing is accomplished by 3D mesh morphing, where we
introduce a vertex merging technique to generate a simpler
metamesh. In in-between light field mapping, an in-between
object is rendered by extracting necessary fragments from
input surface light fields. We also propose an accelera-
tion technique for rendering an in-between object. Exper-
imental results with real and synthetic data show natural
and plausible morphing between objects with surface light
fields. The proposed morphing technique can be used for an
editing tool for 3D photography.

1. Introduction

Metamorphosis, or morphing, is a popular technique
for visual effects, which generates a smooth transforma-
tion of an object into another. Several approaches have
been developed for morphing of objects in different rep-
resentations. 2D image morphing manipulates the images
of objects to achieve compelling illusions of object trans-
formation [3, 12, 15]. 3D object morphing deals with 3D
geometry-based objects [10], where techniques were pro-
posed for handling polygonal meshes (e.g., [9, 11]) and vol-
umetric representations (e.g., [7, 13, 5]). Recently, a morph-
ing technique for image-based objects was proposed [17],
which generates an in-between light field from two given
light fields.
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In this paper, we consider morphing of two objects rep-
resented with surface light fields. A surface light field con-
tains the colors of each object point seen from different view
directions [14, 16, 4]. With a surface light field, we can rep-
resent surface properties, such as textures and specularity
variations, and render accurate images of the object from ar-
bitrary viewpoints. Recently, an object representation with
a surface light field has attracted much attention because
it provides a nice structure for 3D photography. Surface
light field morphing can be used for an editing tool for 3D
photography, which enables warping and morphing of 3D
photographs.

Different representations were proposed for compression
and rendering of surface light fields [14, 16, 4]. In this pa-
per, we chose the representation proposed by Chen et al. [4]
because it produces extremely compact data sets and allows
hardware-supported rendering. In the representation, a sur-
face light field is partitioned into vertex light fields, which
are factorized into surface and view maps. In the rendering
process, called light field mapping, the color of each trian-
gle is determined by the fragments in surface and view maps
corresponding to the triangle.

For morphing two objects with surface light fields, we
should consider three problems: geometry transformation,
surface light field transformation, and rendering accelera-
tion. First, the geometry transformation can be achieved
by a 3D mesh morphing technique but the resulting in-
between mesh will have a more complicated structure than
input. Since surface light field data should be equipped for
each component of the in-between mesh, the complicated
structure incurs much computational and memory overhead.
Hence, it is important to reduce the complexity of an in-
between mesh for efficient morphing of surface light fields.
Second, the transformation of surface light fields cannot be
handled by previous morphing techniques, including light
field morphing [17], and will be the main problem of this
paper. Finally, since an in-between object simultaneously
contains the shape and surface characteristics of two input
objects, it has a more complicated data set and takes more
time to render than an input object. Thus, an acceleration
technique will be useful for rendering an in-between object.



In this paper, we present effective solutions for the prob-
lems of surface light field morphing. The main contribu-
tions of this paper are:

• simpler metamesh construction: We adopt the tech-
nique proposed by Alexa [1] to generate a metamesh
that merges the geometry of input meshes. However,
to produce a simpler metamesh, this paper proposes
a vertex merging technique, which drastically reduces
the number of vertices in a metamesh. A simpler
metamesh allows efficient generation and rendering of
the surface light field of an in-between object.

• in-between light field mapping: To handle the trans-
formation of surface light field, this paper presents a
rendering technique for the triangles of a metamesh,
which we call in-between light field mapping. We
do not explicitly construct an in-between surface light
field for a metamesh. Instead, a triangle of a metamesh
is rendered by dynamically extracting the necessary
fragments from the input surface and view maps. With
this approach, we can avoid the computational and
memory overhead for constructing an in-between sur-
face light field, while properly interpolating the surface
characteristics from the source to target objects.

• rendering acceleration: This paper presents an ap-
proximation technique for the in-between images from
surface light field morphing. The interior of an in-
between object is rendered by applying in-between
light field mapping to the triangles of input objects
which have been transformed to in-between positions.
Only the parts around the silhouettes are rendered with
metamesh triangles. With this approximation, we can
accelerate the generation of an in-between image with-
out much degrading the image quality.

The remainder of this paper is organized as follows. Sec-
tion 2 gives preliminaries for surface light field morphing.
In Section 3, we present the overview of the proposed tech-
niques, which will be detailed in the following three sec-
tions. Section 7 shows several morphing examples and Sec-
tion 8 concludes this paper.

2. Preliminaries

2.1. Surface light field representation

Chen et al. proposed a compact representation and a
hardware-supported rendering technique for a surface light
field [4]. In the representation, a surface light field is par-
titioned into a set of vertex light fields. Each vertex light
field f(r, s, θ, φ) is decomposed into several surface maps

gk[r, s] and view maps hk[θ, φ] which satisfy

f(r, s, θ, φ) ≈
K∑

k=1

gk[r, s]hk[θ, φ]. (1)

In Eq. (1), the first pair (r, s) indicates a surface location,
the second pair (θ, φ) indicates a viewing direction, and k
is the number of approximation terms.

With the representation, an object triangle is rendered
by blending three vertex light fields at the vertices of the
triangle. To render a vertex light field at a vertex, frag-
ments are extracted from the surface and view maps, gk[r, s]
and hk[θ, φ], and multiplied pixel-by-pixel by multitextur-
ing. The results of fragments from gk[r, s] and hk[θ, φ],
k = 1, . . . , K , are added to determine the final color pro-
vided by a vertex light field.

2.2. Mesh morphing

Mesh morphing techniques based on polygonal repre-
sentations generally consist of two steps: correspondence
establishment and geometry interpolation [10]. In the first
step, the vertices and edges of the source and target meshes
are embedded onto a common domain such as a sphere
[9, 1], 2D polygon [8, 2, 6], and base mesh [11]. Then,
a metamesh is created by merging the embedded vertex and
edge sets on the common domain. For each vertex in the
metamesh, the source and target positions are determined
by mapping the vertex onto the surfaces of the source and
target meshes, respectively. In the interpolation step, an in-
between mesh is generated by interpolating the vertices in
the metamesh between the source and target positions.

3. Overview

We first introduce the notations used in this paper. The
source and target objects with surface light fields are de-
noted by SLF s and SLF t, respectively. The source object
SLF s consists of a light field map Ls and a 3D mesh M s.
Similarly, the light field and the 3D mesh of SLF t are de-
noted by Lt and M t, respectively. In this paper, we assume
that M s and M t are 2-manifold triangular meshes. An in-
between object, its light field, and its 3D mesh are denoted
by SLF i, Li, and M i, respectively. For the blending rate
α, 0 and 1 imply the source and target objects, respectively.
We represent SLF i with the rate α as SLF i

α, which implies
SLF i

0 = SLF s and SLF i
1 = SLF t. When α changes

from 0 to 1, SLF i
α should smoothly transform from SLF s

to SLF t.
The overall process for morphing two objects with sur-

face light fields consists of two main components, geometry
morphing and in-between light field mapping, as illustrated
in Figure 1.
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Figure 1. Overall process

• geometry morphing: We first construct a metamesh
from input meshes M s and M t with the feature cor-
respondence specified by the user. In the construction,
we perform vertex merging to reduce the number of
vertices in the metamesh. To obtain an in-between
mesh M i

α, the vertex positions of the metamesh are
determined by interpolating those of M s and M t with
α. Note that the metamesh construction is needed only
once for different α values if the feature correspon-
dence is not changed.

• in-between light field mapping: To render M i
α with

the in-between light field map Li
α, we first extract the

fragments from the source light file map Ls which cor-
respond to the triangles of M i

α. Remind that we do not
explicitly construct Li

α. The extracted fragments are
mapped onto the triangles of M i

α by multitexturing as
in [4]. Similarly, fragments are extracted from the tar-
get light field map Lt and mapped onto M i

α. The col-
ors of triangles of M i

α are finally determined by blend-
ing the values from Ls and Lt with the rate α.

In the rendering process of an in-between object SLF i,
fragment extraction from given light field maps and multi-
texturing are performed for each triangle of M i. The ren-
dering process may take much time if M i has much larger
number of triangles than M s and M t, despite of the vertex
merging. In that case, we can accelerate the process by ap-
proximating the images of SLF i with those of transformed
SLF s and SLF t.

4. Geometry Morphing

4.1. In-between mesh generation

To generate a plausible and desired shape of an in-
between mesh M i, the correspondence of features should
be established between the source and target meshes, M s

and M t. In this paper, feature correspondence is specified
by pairs of vertices on M s and M t. Figure 2 shows an ex-
ample. Several points on input meshes are selected by the

user, where the same colored points on M s and M t corre-
spond to each other.

After the feature correspondence between M s and M t

has been specified, we construct a metamesh by merging the
vertices and edges of M s and M t. In this paper, we adopt
the metamesh construction technique proposed by Alexa
[1], which is based on spherical embedding of meshes (see
Figure 2).

Sphere embedding

Metamesh

Input meshes

M t

M s

Figure 2. Metamesh construction

Regardless of the blending rate α, M i
α has the same con-

nectivity as the metamesh constructed from M s and M t.
Hence, to obtain M i

α for a given α, it is sufficient to in-
terpolate the vertex positions of the metamesh from M s to
M t. In this paper, the position pi

α of a vertex in M i
α is deter-

mined by linearly interpolating the corresponding positions
ps in M s and pt in M t; that is,

pi
α = (1 − α) · ps + α · pt. (2)

4.2. Vertex merging

The vertex set of a metamesh contains the vertices of the
source and target meshes, M s and M t, and the intersec-
tion points of the edges in the embedding of M s and M t

onto the common spherical domain. The edges and faces
in M s and M t may be partitioned into several pieces on
a metamesh. Hence, a metamesh usually has much more
complicated structure than M s and M t, which increases the



required memory and rendering time for an in-between ob-
ject SLF i.

Let vs and vt denote the vertices of M s and M t embed-
ded onto the common spherical domain, respectively. To
reduce the complexity of a metamesh, we merge the pairs
of vertices (vs, vt) which are close to each other before we
compute the intersections of edges on the common spheri-
cal domain. The detailed steps of the vertex merging are as
follows.

1. For each target vertex v t, we find the source triangle f s

to which vt belongs on the common spherical domain
(see Figure 3). We make three vertex pairs with v t

and three vertices of f s. Each vertex pair is inserted
into a priority queue with the distance between the two
vertices in the pair.

2. From the priority queue, we extract the vertex pair one
by one in the increasing order of the distance. Let
(vs, vt) be such a vertex pair. If vs has already been
merged with another vertex v t′ , we discard the vertex
pair because vt′ is closer to vs than vt. Otherwise, we
merge vt with vs. The vertex merging is not allowed
when it causes a triangle flipping.

3. After processing all the vertex pairs in the queue, we
apply the relaxation to the vertex positions on the
spherical domain in the same way used for sphere em-
bedding [1]. The relaxation step resolves the distor-
tions introduced by the vertex merging.

v s

M s

v t
f s

Figure 3. Vertex pairs in vertex merging

The vertex merging process considerably decreases the
number of vertices in a metamesh, as demonstrated in Sec-
tion 7. The proposed vertex merging technique can be ap-
plied to other metamesh construction techniques without
much modification.

5. In-between Light Field Mapping

To explicitly construct the light field map Li for an in-
between object SLF i, we have to compute the vertex light
field for each vertex vi of the mesh M i. The vertex light
field of vi can be obtained by transforming and blending
those of the vertices in M s and M t which are adjacent to vi

in the spherical embedding. However, M i has a larger num-
ber of vertices than M s and M t, and the vertex light field
of vi should be changed with the blending rate α. Hence,
explicit construction of Li for SLF i is inefficient in terms
of the required memory and computation.

In this paper, instead of constructing L i, we render the
triangles in M i by extracting and blending the necessary
fragments from the source and target light field maps, L s

and Lt. Consider a triangle f s in M s which is partitioned
into several triangles in M i (see Figure 4). To render a tri-
angle f i

m in M i, we first extract the fragments from the sur-
face and view maps on f s which correspond to f i

m in the
spherical embedding. We can then obtain the color of f i

m

given by Ls with Eq. (1). Similarly, we can derive the color
of f i

m given by Lt from the surface and view maps on the
face of M t which contains f i

m. The final color of f i
m is

determined by blending those given by L s and Lt.

f s
vm
i

fm
i

vm
i
+1

vm
i
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(a) source polygon (b) in-between polygon

Figure 4. Polygons in input and in-between
meshes

In the remainder of this section, we explain the details
of the fragment extraction from the surface and view maps
on f s. The same technique can be applied to the extraction
from a target face.

5.1. Surface map fragment extraction

Let gk[r, s] be a surface map on the triangle f s in M s

(see Figure 5). The fragment of gk[r, s] corresponding to
the face f i

m in M i is determined by the position of f i
m in fs

on the spherical embedding. We can easily obtain the frag-
ment by using the barycentric coordinates of the vertices
of f i

m computed with respect to f s. In Figure 5(b), pi
m,

pi
m+1, and pi

m+2 are the positions on gk[r, s] determined
by the barycentric coordinates, and the green region is the
fragment extracted for f i

m. Note that the extracted fragment
does not change regardless of the blending rate α and the
rendering viewpoint.

5.2. View map fragment extraction

Contrary to the case of a surface map, the fragment ex-
tracted from a view map changes with the viewpoint. In
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Figure 5. Surface map fragment extraction

addition, the blending rate α has influence on the extracted
fragment. For different values of α, the vertex normals of an
in-between mesh M i vary due to the shape change. Then,
the color of a vertex in M i viewed from a viewpoint also
changes with the vertex normal. Hence, the view map frag-
ment extracted for a triangle f i in M i is determined by the
vertex normals of f i and the viewpoint.

Let hk[θ, φ] be a view map on the triangle f s in M s

which contains the triangle f i in M i on the spherical em-
bedding. For a view direction �vs = (θm, φm), hk[θm, φm]
contains the incoming radiance reflected through the nor-
mal vector �ns (see Figure 6(a)). With the assumption of a
reflective BRDF, the incoming radiance information can be
specified by the reflection vector �vs

R [16]. When the normal
vector changes to �ns′

, the radiance is reflected to another
view direction �vs′

.
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Figure 6. View direction mapping

For a given viewpoint, the fragment extracted for f i is
designated by three points in hk[θ, φ] which are obtained
from the three vertices of fi. Let vi be a vertex of f i and
�vi be the view direction to vi (see Figure 6(b)). The incom-
ing radiance for vi can be specified by the reflection vector
�vi

R. In the view map hk[θ, φ], the radiance information is
stored at the view direction �vs′

, which is the reflection vec-
tor of �vi

R through the normal vector �ns on f s. Hence, we
use the direction �vs′

to select the point in hk[θ, φ] which
corresponds to the vertex v i. The points in hk[θ, φ] for the
other vertices of f i can be obtained in the same way. If the
direction �vs′

exceeds the range of hk[θ, φ], we select the

nearest direction in hk[θ, φ].

6. Rendering Acceleration

To accelerate the rendering of an in-between object
SLF i, we can blend two images generated by rendering the
source and target objects, SLF s and SLF t. In that case,
before rendering SLF s and SLF t, we transform the ver-
tex positions of M s and M t to the corresponding positions
in M i (see Figure 7). Remind that M s and M t are much
simpler than M i and so SLF s and SLF t can be rendered
much faster than SLF i. Figure 8 shows an example with
images from SLF s and SLF t and their blending.

Connectivity Geometry

Figure 7. Geometry transformation

+ =

Figure 8. Approximate in-between image

When we transform the geometry of M s, we refine the
regions on M s which are mapped to the silhouettes of the
in-between mesh M i. The refined triangles of M s are re-
placed by the corresponding triangles of M i. Figure 9(a)
shows an example, where the shaded triangles of M s are
replaced by several triangles of M i shown with red edges.
The silhouette refinement is also performed on M t when
it is transformed. This refinement is needed because ver-
tex position changes are not enough for transforming M s

and M t to have aligned silhouettes. For rendering SLF s

and SLF t with M s and M t transformed by vertex position
change and silhouette refinement, we apply the in-between
light field mapping, described in Section 5, to the trans-
formed geometry.

As shown in Figure 9(b), holes and overlaps may occur
around the boundary between the refined and interior re-
gions. We can remove such holes and overlaps by mapping
the vertices on the refined region boundary (v h

i and vh
j in

Figure 9(a)) onto the edges on the interior region boundary,
as illustrated in Figure 9(c). Figure 9(d) shows the final re-
sult with the modified silhouette refinement, where artifacts
have been appropriately removed.
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Figure 9. Silhouette refinement

7. Experimental Results

We have implemented the proposed surface light field
morphing technique on a Pentium IV 2.0GHz PC. In this
section, we show several morphing examples for the objects
with real or synthetic surface light fields. All synthetic data
used in this paper were rendered by MaYaTM .

Figures 10 through 14 show morphing examples, where
the horse and turtle models are equipped with real surface
light fields and all the others have synthetic data. In the
examples, we can see that the surface characteristics of ob-
jects, as well as the geometry, are smoothly transformed in
the morphing sequence.

Figures 15 shows an example of texture transfer [17]. In
the example, the surface light field of a turtle in Figure 11
is transferred to the 3D mesh of bunny in Figure 11. The
texture transfer generates a plausible object with realistic
surface characteristics.

For all morphing examples in this paper, feature spec-
ification could be completed in 10 to 20 minutes. The
metamesh construction takes few minutes on a Pentium IV
2.0GHz PC. Table 1 shows other statistics of the examples.
The number of specified feature points increases when the
shapes of input objects are much different. With the ver-
tex merging technique, the number of triangles in a sim-
pler metamesh is reduced to about a half of the original
metamesh. We could interactively render an in-between ob-
ject for all morphing examples. The rendering acceleration
technique increases the frame rates about twice while it gen-
erates approximate images of an in-between object.

8. Conclusion

In this paper, we presented a morphing technique for
two objects represented with surface light fields. The tech-
nique consists of geometry morphing and in-between light
field mapping. Geometry morphing is accomplished by 3D
mesh morphing using a metamesh. We introduced the ver-
tex merging technique that generates a simpler metamesh.
In in-between light field mapping, an in-between object is
rendered by extracting necessary fragments from source and
target surface light fields. We also proposed a rendering ac-
celeration technique to speed up the image generation for
an in-between object. Experimental results with real and
synthetic data show that the proposed technique produces
natural and plausible morphing between objects with sur-
face light fields.
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