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Abstract

This paper proposes a general framework for overfitting control in surface reconstruction from noisy point data.
The problem we deal with is how to create a model that will capture as much detail as possible and simultaneously
avoid reproducing the noise of the input points. The proposed framework is based on extra-sample validation. It
is fully automatic and can work in conjunction with any surface reconstruction algorithm. We test the framework
with a Radial Basis Function algorithm, Multi-level Partition of Unity implicits, and the Power Crust algorithm.

Categories and Subject Descriptors (according to ACM CCS): I.3.5 [Computer Graphics]: Computational Geometry
and Object Modeling; I.6.5 [Simulation and modeling]: Model Development

1. Introduction

In this paper, we deal with the problem of data overfitting in
surface reconstruction. Overfitting appears when we model a
given sample so faithfully that we capture not only informa-
tion about the underlying surface but also the idiosyncrasies
of the sample, that is, the noise in the points. Fig. 1 shows an
example of overfitting.

Instead of modifying any of the existing algorithms, we
propose a general framework for handling overfitting, which
can be used in conjunction with any surface reconstruc-
tion technique. Our framework is based on a simple and
accurate method for error estimation, extra-sample valida-
tion [HTF01]. The initial data set is randomly subdivided
into two distinct subsets, the training set and the validation
set. Data from the training set are used for trials of surface re-
construction, while the quality of reconstruction is assessed
using the validation set. To have trials of reconstruction with
increasing surface complexity, we use a hierarchical parti-
tion of the training data, based on an octree. We compute a
representative training sample for each octree cell and a sur-
face is created by applying a reconstruction algorithm to the
training samples from the leaf cells of the octree.

1.1. Related work

In the area of surface reconstruction, [HDD∗92, TL94,
BBX95, CL96] are some of the earlier algorithms that influ-
enced the field. More recently, implicit techniques emerged
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Figure 1: Curve reconstruction: (a) sample points; (b) un-
derfitted model; (c) correct model; (d) overfitted model.

as the fastest and more stable techniques. The most common
choices of implicits are the radial basis functions (RBFs)
[CBC∗01,OBS03] and quadrics [OBA∗03]. Delaunay tetra-
hedrization has also been successfully used for surface re-
construction [ACK01, DG03]. In this paper, we experiment
with the the techniques in [OBS03] and [OBA∗03] and the
Power Crust algorithm [ACK01].

In the literature of surface reconstruction, relatively little
attention has been paid to the problem of overfitting. Ohtake
et al. [OBS04] proposed an algorithm which penalizes over-
fitting by adding a regularization term to the usual distance
error metric between the model and a sample. However, they
did not present an automatic method to control the regu-
larization term. Steinke et al. [SSB05] use Support Vector
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Machines for surface reconstruction. They avoid overfitting
with a regularization term which is determined with extra-
sample validation. However, as in [OBS04], they treat over-
fitting as a global phenomenon, with one regularization term
applied for the whole model. In many cases, this is not a
realistic assumption.

2. Overfitting Control Framework

Following the standard terminology, the training error of a
given model is the error measured against the training data.
The prediction error is the expected error between the model
and any sample coming from the same source as the train-
ing data. Overfitting usually arises when we try to mini-
mize the training error instead of the prediction error. Indeed,
the training error typically decreases monotonically with the
model complexity, and eventually becomes zero when we in-
terpolate the training data. In contrast, in a typical behavior
shown in Fig. 2, the prediction error first decreases with the
model complexity and then increases as we start overfitting.
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Figure 2: Typical training and prediction error curves.

2.1. Simple approach

In a simple approach to overfitting control, we can first split
the data into the training and validation sets and then use the
training data to reconstruct a series of different surfaces, in-
dexed by one or more algorithmic parameters. We can select
the surface with the least error against the validation data as
the final output. However, this simple approach has certain
limitations. First, the error is computed as an average over
the whole surface. This error assumes a uniformly distrib-
uted noise, which is rarely the case with scan data. Second,
the implementation depends on the specific parameters of a
surface reconstruction algorithm and as a result, we need to
devise a new strategy for each different algorithm.

2.2. Hierarchical framework

To overcome these limitations, we propose a hierarchical
framework based on adaptive spatial subdivision of the input
data. We first randomly select a half of the input points to be
the training data. The other half of the points are the valida-
tion data. The data structure used for spatial subdivision is

Figure 3: The red points are training data. The blue points
are cell representatives. Piecewise linear interpolating re-
constructions are shown in blue.

a progressively refined octree. At the beginning, the octree
consists of a single cell corresponding to the bounding box
of the input data. As an initialization step, we recursively
subdivide the bounding box up to a few levels.

For a given octree Ol at level l, we split all the leaf cells
that have not been marked as “completed” and create a new
tree Ol+1 at the next level l + 1. Then, we determine a sin-
gle representative point for the training points in each leaf
cell cl+1 of Ol+1 by weighted averaging. We feed these rep-
resentative points to the surface reconstruction algorithm of
our choice to produce a surface Sl+1. For the leaf cells of
the previous and current octrees, Ol and Ol+1, we compute
the validation errors against the surfaces Sl and Sl+1. A cell
cl passes the overfitting test if the validation errors are de-
creasing with the subdivision of cl itself or the majority of
the child cells cl+1. In this case, we keep the children of cl
in Ol+1 and mark them as “uncompleted”. Otherwise, over-
fitting is detected and we mark cl as completed and remove
its children from Ol+1. For cells which do not have enough
validation points for a reliable error estimate, we also use
validation points from neighbor cells. When an octree cell
contains only one training point, it is marked as completed.

We repeat this process until all leaf cells of the adaptively
refined octree are marked as completed. After completing
the adaptive spatial subdivision with overfitting control, we
collect the representative points from the leaf cells of the
final octree. The final surface is obtained by applying the
surface reconstruction algorithm to these points. Fig. 3 illus-
trates a 2D example.

Our overfitting control framework can work with any sur-
face reconstruction technique, which can be considered as
a black box. The input of the black box is two point sets,
training data and validation data, and the output consists
of the reconstructed surface and the validation error. Dur-
ing the overfitting control process, we do not need the ac-
tual surface reconstructions but only the error measurements
for the validation data. For an implicit-based technique, such
as [OBA∗03] and [OBS03], we can directly estimate the dis-
tance of a validation point from the surface using the Taubin
distance [Tau91], as used in [OBA∗03]. In the case of the
Power Crust, we measure the error from a surface by the
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Metro tool [CRS98]. The following pseudocode summarizes
our hierarchical framework.

—————————————————————–
Overfitting control framework
Input: training and validation data, Ptr and Pvl .
Output: octree partitioning of the bounding box of Ptr ∪Pvl .

l = 0;
O0 = subdivision of the bounding box of Ptr ∪Pvl

up to a few levels;
S0 = MakeSurface(Ptr,O0);
while (Ol has uncompleted cells) do {

subdivide uncompleted cells of Ol to create Ol+1;
Sl+1 = MakeSurface(Ptr,Ol+1);
for (each uncompleted cell ci of Ol) {

if (test with Pvl detects an overfitting at level l +1) {
mark ci as completed;
remove children of ci from Ol+1;

} else
keep and mark children of ci in Ol+1

as uncompleted;
}
l++;

}
return Ol ;

MakeSurface(P,O): for each cell c of O, compute a repre-
sentative for the points of P contained in c and use a surface
reconstruction algorithm to return a surface S.

—————————————————————–

Finally, if we are not sufficiently rich in data and want the
reconstruction to involve all the available data, we can per-
form a 2-fold cross validation [HTF01]. That is, we repeat
the whole process after swapping the training and validation
data, and merge the two results.

3. Experimental Results

We tested the proposed framework with the RBF interpo-
lation [OBS03] and the Power Crust [ACK01], chosen as
examples of interpolating techniques with and without nor-
mals. We also used the MPU implicits [OBA∗03] as an ap-
proximating technique with the use of a small error bound.

Fig. 5 shows reconstructions by these three algorithms.
We used a point set sampled from the tangle cube,

x4−5x2 + y4−5y2 + z4−5z2 +11.8 = 0, (1)

with added noise. Overfitting control successfully reduced
the noise in the data set and the results describe the underly-
ing shape more faithfully. Table 1 compares the reconstruc-
tion errors. In all cases, overfitting control reduces the max-
imum error. In the cases of RBF and MPU, overfitting con-
trol also reduces the RMS error. For Power Crust, the re-
construction with overfitting control has a smaller number
of polygons and we have an increased RMS error.

RBF MPU Power Crust
Max. single app. 0.0208 0.0260 0.0280
Error overf. control 0.0117 0.0114 0.0246
RMS single app. 0.0241 0.0203 0.0351
Error overf. control 0.0147 0.0148 0.0407

Table 1: Reconstruction errors measured by the Metro tool.

Figure 4: Left: single RBF. Right: overfitting control.

Fig. 4 shows the RBF reconstructions of the bunny model
without and with overfitting control. The initial point set
from the Stanford Digital Model repository contains the
original scanning noise. We used the confidence values sup-
plied with the points as weights in the computation of the
validation errors.

4. Discussion and Future Work

We propose a framework for the systematic control of over-
fitting in surface reconstruction. It is fully automatic and can
be used in conjunction with any surface reconstruction tech-
nique, which can be treated as a black box. The levels of
detail are determined by the quality of data, which means
that some parts of the reconstruction can have more details
than others. On the other hand, as one would expect, there
is a computational overhead compared to the correspond-
ing single reconstruction algorithms. We think that this extra
computational time is justified as it allows a more informed
model selection based on the analysis of the original data.

The effect of overfitting control on the model may be con-
sidered similar to that of a postprocessing smoothing step.
However, the main difference between these two techniques
is that smoothing needs a user-controlled parameter, while
overfitting control is based on data analysis. Consequently,
in overfitting control, the amount of smoothing is locally and
adaptively determined by the data. In contrast, in a smooth-
ing technique, a user-controlled parameter is globally ap-
plied to control the smoothing effects because it is tedious
or impossible to assign a different parameter value for each
specific region.

Recently there has been considerable research on algo-
rithms and representations of point based geometry, such as
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(a) tanglue cube (b) RBF (c) MPU (d) Power Crust

Figure 5: Bottom left: a point set sample. Top left: the same sample with added noise. The other three figures in the top row
show single reconstructions from the noisy sample, while those in the bottom row show the results of overfitting control.

point set surfaces [ABCO∗03]. These techniques are related
to this paper in that they also consider processing a given
point set to obtain a better one in representing the underly-
ing surface. We hope the main idea of this paper can also
be applied to those kinds of techniques, although the details
would differ.
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