
Coherent Line Drawing

Henry Kang∗

University of Missouri, St. Louis
Seungyong Lee†

POSTECH
Charles K. Chui‡

University of Missouri, St. Louis

(a) Input image (b) Isotropic DoG filtering (c) Our method(a) Input image (b) Isotropic DoG filtering (c) Our method

Figure 1: Line drawing example

Abstract

This paper presents a non-photorealistic rendering technique that
automatically generates a line drawing from a photograph. We aim
at extracting a set of coherent, smooth, and stylistic lines that ef-
fectively capture and convey important shapes in the image. We
first develop a novel method for constructing a smooth direction
field that preserves the flow of the salient image features. We then
introduce the notion of flow-guided anisotropic filtering for detect-
ing highly coherent lines while suppressing noise. Our method is
simple and easy to implement. A variety of experimental results
are presented to show the effectiveness of our method in producing
self-contained, high-quality line illustrations.

CR Categories: I.3.3 [Computer Graphics]: Picture/Image
Generation—Line and curve generation; I.3.3 [Computer Graph-
ics]: Picture/Image Generation—Display algorithms;

Keywords: non-photorealistic rendering, line drawing, edge de-
tection, flow-based filtering

1 Introduction

Line drawing is arguably the simplest and oldest means of visual
communication which dates back to prehistoric ages. As a crude
form of human interpretation of a real scene, line drawing uses the
minimal amount of data (that is, lines) and yet effectively conveys
object shapes to the viewer. It even outperforms photorealistic im-
agery in terms of the efficacy of visual information transfer and
subject identification. In this paper, we focus on ‘pure’ black-and-
white line drawing, where lines are used to convey the shape of an

∗e-mail: kang@cs.umsl.edu
†e-mail: leesy@postech.ac.kr
‡e-mail: chui@arch.umsl.edu

object but not the tonal information on the object surface.

We present an automatic technique that generates a high-quality
line drawing from a photograph, where the meaningful structures
in the scene are captured and displayed with a set of clean, smooth,
coherent, and stylistic lines, with little or no clutter. The main con-
tribution of this paper lies in the introduction of a novel flow-driven
anisotropic filtering framework. We modify an existing edge de-
tection filter so that it adapts to a highly anisotropic kernel defined
by the ‘flow’ of salient image features, and thereby significantly
enhance the coherence of the lines while suppressing noise. The re-
sulting filter response directly serves as the targeted line illustration
and does not require any post-processing.

1.1 Related work

In the community of non-photorealistic rendering (NPR), a variety
of methods have been reported on the line drawing of 3D mod-
els [Markosian et al. 1997; Hertzmann and Zorin 2000; DeCarlo
et al. 2003; Kalnins et al. 2003; Sousa and Prusinkiewicz 2003;
Isenberg et al. 2003]. However, attempts on making pure line draw-
ings from photographs have been rare, in part due to the difficulty
of identifying shapes that are implicitly embedded in a raw image,
without depth information and often corrupted by noise. Many of
these issues are addressed by existing edge detection or image seg-
mentation techniques, which, however, do not deal with aesthetic
aspects as they are not intended for creating stylistic illustrations.
Also, a crude edge map often fails to qualify as a good illustration,
on account of spurious lines and missing lines.

Many image-based NPR techniques thus ‘partially’ use lines to help
create illustrations other than pure line drawing, that is, the ones
dealing with not only the outlines of regions but also their interior
properties such as color, tone, material, etc. For example, Salis-
bury et al. [1994] developed a system for interactive pen-and-ink
illustration, where they allow the use of an edge detector [Canny
1986] to construct the outline strokes and also to clip the interior
strokes. Litwinowicz [1997] employed the same edge detector to
similarly clip the paintbrush strokes and preserve feature lines. Os-
tromoukhov [1999] used interactively specified outlines as a ba-
sis for digital facial engraving. Similarly, algorithms for tile mo-
saics [Hausner 2001], jigsaw mosaics [Kim and Pellacini 2002] and
stipple drawing [Deussen et al. 2000] all take advantage of user-

(a) Input image (b) Edge Tangent Flow (c) Line drawing

edge flow

construction

flow-based

DoG filtering

Figure 2: Process overview

defined outlines to enhance the look of the illustration.

Certain NPR styles such as ‘photograph tooning’ require more ex-
plicit display of lines. DeCarlo and Santella [2002] employed both
Canny edge detector and mean-shift segmentation algorithm [Co-
maniciu and Meer 2002] to obtain cartoon-style image abstraction.
Wang et al. [2004] and Collomosse et al. [2005] presented off-line
video abstraction techniques based on mean-shift segmentation,
focusing on achieving good spatio-temporal coherence. Wen et
al. [2006] also use mean-shift segmentation for producing a rough
sketch of the scene. Fischer et al. [2005] applied Canny edge detec-
tor in conjunction with bilateral filter to obtain stylized augmented
reality. Canny’s method was again used by Kang et al. [2006] in
producing a wide variety of artistic styles, ranging from region-
based to outline-based. As shown in [DeCarlo and Santella 2002],
image segmentation is useful for abstracting regions (and color)
but less ideal for line drawing, because each segmented region in-
evitably forms a closed boundary which does not necessarily match
the accurate outline.

While Canny’s method [1986] is generally considered the de facto
standard for edge detectors, one may choose other edge detection
method for line drawing. Gooch et al. [2004] presented a facial
illustration system based on a difference-of-Gaussians (DoG) fil-
ter, originated from Marr–Hildreth edge detector [1980]. They
used this filter in conjunction with binary thresholding to produce
a black-and-white illustration. Winnemöller et al. [2006] recently
extended this technique to general color images and video. Com-
pared with Canny’s method, their DoG edge model has proven to
be more effective for artistic illustrations in the following respects:
It captures interesting structures better (as shown in [Gooch et al.
2004]), and it automatically produces a set of stylistic edges (in
non-uniform thickness).

This DoG edge model, however, is not without limitations. Due
to the nature of isotropic filter kernel, the aggregate of edge pixels
may not clearly reveal the sense of ‘directedness’ (and thus may
look less like lines). Also, the thresholded edge map may exhibit
some set of isolated, scattered edge components that clutter the out-
put, especially in an area with image noise or weak contrast (see
Fig. 1b). Although we may consider adjusting the threshold in or-
der to improve the edge coherence, the result can be even poorer
due to added noise. This problem is significantly diminished in our
flow-based anisotropic filtering framework (see Fig. 1c).

1.2 Contributions and Overview

The main idea behind our approach is to take into account the ‘di-
rection’ of the local image structure in DoG filtering, rather than
looking in all directions. Especially, we apply DoG filter only in a
direction perpendicular to that of the local ‘edge flow’, that is, the
direction in which there is supposed to exist the biggest contrast.
We then collect the evidence (filter response) along this flow to fi-

nally determine the edge strength. As will be shown in this paper,
this flow-guided filtering approach not only enhances the coherence
of the lines, but also suppresses noise.

Our technical contributions are two-fold. For computing a smooth,
feature-preserving local edge flow (called edge tangent flow), we
develop a kernel-based nonlinear vector smoothing technique (de-
scribed in Section 2). Also, we present a flow-based anisotropic
DoG filtering technique (described in Section 3) that directly pro-
duces the line illustration. Fig. 2 shows the overview of our method.

Our line drawing framework thus gives advantages in the following
respects:
Line coherence: Our technique differs from conventional edge de-
tectors in that it uses a highly anisotropic, curve-shaped filter kernel
in order to maximize the line coherence. It is even capable of con-
structing a line from a set of isolated edge points, by adjusting the
kernel size.
Robustness: Our method is robust and less susceptible to image
noise. Thus, it reduces spurious lines and produces smooth line
strokes.
Quality: With the properties above, the filter output often directly
results in a good-quality line illustration.
Simplicity: Our method is straightforward and easy to implement.
Generality: Our flow-based filtering framework is general. Other
filters may be applied similarly to improve their performance (in
terms of feature preservation).

2 Flow construction

2.1 Edge Tangent Flow

We first construct the edge flow field from input image I(x), where
x = (x, y) denotes an image pixel. To facilitate the production
of high-quality line drawing, this vector field must satisfy the fol-
lowing requirements: (1) The vector flow must describe the salient
edge tangent direction in the neighborhood; (2) The neighboring
vectors must be smoothly aligned except at sharp corners; (3) Im-
portant edges must retain their original directions. Here, we define
the edge tangent, denoted t(x), as a vector perpendicular to the im-
age gradient g(x) = ∇I(x). We use the term ‘tangent’ in a sense
that t(x) may be viewed as the tangent of a curve representing the
local edge flow. Accordingly, we call this vector field an edge tan-
gent flow (ETF).

We present a novel technique for constructing ETF that meets all
the requirements stated above. Our method uses a kernel-based
nonlinear smoothing of vector field, inspired by the bilateral fil-
tering framework [Tomasi and Manduchi 1998]. In each pixel-
centered kernel, we perform a nonlinear vector smoothing, such
that the salient edge directions are preserved while weak edges are
directed to follow the neighboring dominant ones. Also, to preserve

(a) ETF (Butterfly – Fig. 1a) (b) Einstein (c) ETF (Einstein)

Figure 3: ETF construction

sharp corners and avoid undesirable ‘swirling’ artifact, we encour-
age smoothing among the edges with similar orientations. This also
prevents weak vectors from being affected by strong but irrelevant
vectors, and thus results in more tightly aligned vectors. Our ETF
construction filter is thus defined as follows:

t
new(x) =

1

k

∑

y∈Ω(x)

φ(x,y)tcur(y)ws(x,y)wm(x,y)wd(x,y)

(1)
where Ω(x) denotes the neighborhood of x, and k is the vector
normalizing term. For the spatial weight function ws, we use a
radially-symmetric box filter of radius r, where r is the radius of
the kernel Ω:

ws(x,y) =

{

1 if ||x− y|| < r,
0 otherwise.

(2)

The other two weight functions, wm and wd, play the key role in
feature preserving. We call wm the magnitude weight function,
which is defined as:

wm(x,y) =
1

2
(1 + tanh[η · (ĝ(y)− ĝ(x))]) (3)

where ĝ(z) denotes the normalized gradient magnitude at z, and η
controls the fall-off rate. Note that this weight function is monoton-
ically increasing, indicating that bigger weights are given to the
neighboring pixels y whose gradient magnitudes are higher than
that of the center x. This ensures the preservation of the dominant
edge directions. A bigger value of η means more strict obedience
to the dominant vectors. We set η = 1 throughout.

Finally, we define wd, the direction weight function, as follows:

wd(x,y) = |tcur(x) · tcur(y)| (4)

where t
cur(z) denotes the ‘current’ normalized tangent vector at

z. Note that this weight function increases as the two vectors
are closely aligned (that is, the angle θ between two vectors gets
close to 0◦ or 180◦), and decreases as they become perpendicu-
lar (that is, θ approaches 90◦). In addition, we reverse the direc-
tion of t

cur(y) before smoothing (in Eq. 1) using the sign function
φ(x,y) ∈ {1,−1}, in case θ is bigger than 90◦:

φ(x,y) =

{

1 if t
cur(x) · tcur(y) > 0,

−1 otherwise.
(5)

This induces tighter alignment of vectors while avoiding swirling
flows.

The initial ETF, denoted t
0(x), is obtained by taking perpendicular

vectors (in the counter-clockwise sense) from the initial gradient

map g
0(x) of the input image I . t

0(x) is then normalized before
use. The initial gradient map g

0(x) is computed by employing
Sobel operator. Our filter may be iteratively applied to update ETF
incrementally: t

i(x) → t
i+1(x). Note in this case g(x) evolves

accordingly (but the gradient magnitude ĝ(x) is unchanged). In
practice, we typically iterate a few (2 ∼ 3) times. Fig. 3 shows
ETF fields obtained from sample images. Notice ETF preserves
edge directions well around important features while keeping them
smooth elsewhere.

2.2 Discussion

It is worth noting that there are other ways to construct ETF. In
non-photorealistic painterly rendering, scattered data interpolation
is often used to create a rough ETF, based on radial basis func-
tions [Litwinowicz 1997; Hays and Essa 2004]. The resulting ETF
is used to guide the placement of brush strokes. Typically, a small
number of basis points (with strong gradients) are selected for vec-
tor interpolation, and as a result the flow can be easily misguided in
an area where some meaningful basis points are omitted by the se-
lection process (such as gradient magnitude thresholding). This in
general does not pose a huge problem in painterly rendering, where
features are often deliberately obscured for an aesthetic purpose.
When applied to line drawing, however, the quality of illustration
can be degraded noticeably. Although one may attempt using a
large number of basis points to resolve this, it could result in a noisy
direction field (let alone the increased computational cost) as all the
selected basis vectors cannot change the original directions.

It is possible to construct a more sophisticated ETF by taking into
account the entire set of pixels. Xu and Prince [1998] formulated
this problem as a partial differential equation, and presented an it-
erative vector diffusion algorithm to create a gradient vector flow
(GVF), that is, a perpendicular version of ETF. They use GVF as an
external force field to attract active contours. While ETF can also be
obtained in this way, we find it less suited for our line-drawing ap-
plication in that it does not preserve the salient edge tangent direc-
tions well, and produces undesirable swirling flows (see Fig. 4-a2).
This is attributed to the fact that the diffusion process takes into ac-
count only the magnitude of the vectors but not their directions. As
shown in Fig. 4-a3, our method successfully removes such artifact.
The second limitation of the vector diffusion method is that it lacks
control over the size of diffusion kernel (only the immediate neigh-
bors are considered) and thus it is difficult to establish coherence
between isolated edges (see Fig. 4-b2). Our method addresses this
problem by providing a size-controllable smoothing kernel (see the
originally isolated components are connected by the flow in Fig. 4-
b3).

(b1) Fingerprint (b2) Vector diffusion (b3) Our method

(a1) Eagle (a2) Vector diffusion (a3) Our method

(b1) Fingerprint (b2) Vector diffusion (b3) Our method

(a1) Eagle (a2) Vector diffusion (a3) Our method

Figure 4: Our method vs. Vector diffusion

3 Line construction

3.1 Flow-based Difference-of-Gaussians

Given t(x), namely the ETF constructed by Eq. 1, we apply a
flow-guided anisotropic DoG filter using the kernel whose shape
is defined by the local flow recorded in ETF. Note t(x) represents
the local edge direction, which means we will most likely have the
highest contrast in its perpendicular direction, that is, the gradient
direction g(x). Thus, the idea is to apply a linear DoG filter in
this gradient direction as we move along the edge flow. We then
accumulate the individual filter responses along the flow, as a way
of collecting enough evidence before we draw the conclusion (on
the ‘edge-ness’). As a result, we can ‘exaggerate’ the filter output
along genuine edges, while we ‘attenuate’ the output from spuri-
ous edges. Therefore, this not only enhances the coherence of the
edges, but also has the effect of suppressing noise.

Fig. 5 illustrates our filtering framework. Let cx(s) denote the in-
tegral curve (also called stream line) at x, where s is an arc-length
parameter that may take on positive or negative values. We assume
x serves as the curve center, that is, cx(0) = x. Our filtering frame-
work is then described as follows. As moving along cx, we apply
a 1-dimensional filter f along the line ls that is perpendicular to
t(cx(s)) and intersecting cx(s):

F (s) =

∫

T

−T

I(ls(t))f(t)dt (6)

where ls(t) denotes the point on the line ls at parameter t. Again t
is an arc-length parameter, and we assume ls is centered at cx(s),
that is, ls(0) = cx(s). Note ls is parallel to the gradient vector
g(cx(s)). I(ls(t)) represents the value of the input image I at ls(t).

As for f , we employ the edge model suggested by Winnemöller et
al. [2006] based on difference-of-Gaussians (DoG):

f(t) = Gσc
(t)− ρ ·Gσs

(t) (7)

where Gσ denotes a 1-dimensional Gaussian function of variance
σ:

Gσ(x) =
1√
2πσ

e
− x

2

2σ
2 (8)

The two variances, σc and σs, are for center and surrounding sec-
tions, respectively. We set σs = 1.6σc to make the shape of f
closely resemble that of Laplacian-of-Gaussian [Marr and Hildreth
1980]. Therefore, once σc is given by the user, it automatically de-
termines σs and thus the size of T in Eq. 6. It also directly affects
the resulting line width. ρ controls the level of noise detected, and
is set to a default value of 0.99.

The individual filter responses F (s) are then accumulated along cx:

H(x) =

∫

S

−S

Gσm
(s)F (s)ds (9)

where F is convolved with a Gaussian function to assign a variable
weight to each response according to s. The user-provided parame-
ter σm automatically determines the size of S. Note σm controls
the length of the elongated flow kernel, and hence the degree of line
coherence to enforce.

Once we obtain H from Eq. 9, we convert it to a black-and-white
image by binary thresholding, as suggested in [Winnemöller et al.
2006]:

H̃(x) =

{

0 if H(x) < 0 and 1 + tanh(H(x)) < τ,
1 otherwise.

(10)
where τ is a threshold in [0, 1]. This binary output H̃ serves as our
targeted line illustration.

Since our anisotropic DoG filter is driven by the vector flow, we
name it Flow-based Difference-of-Gaussians (FDoG) filter.

x

x

S

S−

T
T−

T

T

T−

T−

0

cσ
G

sσ
G

TT−

s
l

(a) (b) (c)

(d) (e)

x
c

x

)(xt

x
c

Figure 5: Flow-based DoG filtering: (a) Input (b) ETF (c) Kernel
at x (d) Kernel enlarged (e) Gaussian components for DoG

For implementation, we sample p × q points from the kernel and
discretely approximate Eq. 6 and Eq. 9. We first sample p points
along cx by bidirectionally following the vector flow starting from
x. Let z denote the sample points along cx. Initially, we set z← x,
then iteratively obtain the next sample point by moving along cx

in one direction using a fixed step size δm: z ← z + δm · t(z).
Similarly, we obtain the sample points on the other half of cx: z←
z − δm · t(z). Now at each z, we sample q points along the line
perpendicular to t(z), similarly with the step size of δn. In our
experiments, we set δm = δn = 1. Note p and q are automatically
determined by σm and σc, respectively.

(b) Canny (c) Isotropic DoG (d) ETF (e) FDoG(a) Input

Figure 7: Line construction from a set of isolated points

(b) Isotropic DoG (c) Isotropic DoG (d) ETF (e) FDoG(a) Input

Figure 8: Noise suppression by FDoG

(b) Isotropic DoG (c) FDoG: m=3.0(a) Input

(e) FDoG: c=2.0 (f) FDoG: =0.997(d) FDoG: m=1.0

Figure 6: FDoG filtering with parameter control

Fig. 6 shows applications of our FDoG filter with differing parame-
ter values. Each caption gives the modified parameter value from
the default setting: σm = 3.0, σc = 1.0, ρ = 0.99. Notice the
improved line coherence compared to that of the isotropic DoG fil-
ter. Fig. 7 shows that unlike conventional edge detectors, it is even
possible to find a line from a set of disconnected points, by simply
setting the ETF kernel (Ω in Eq. 1) bigger than the distance between
neighboring points. Fig. 8 demonstrates the robustness of FDoG
against noise. Fig. 8a is an image corrupted by Gaussian noise.
Fig. 8b is an output of isotropic DoG filter followed by binarization
with a low threshold (τ = 0.2). Notice the weak line coherence due
to noise. While higher threshold (τ = 0.7) as in Fig. 8c improves
the coherence, the added noise clutters the output. On the other
hand, Fig. 8d shows that we can still construct a relatively smooth
ETF around the target shape, resulting in the extraction of a clean,
coherent line (Fig. 8e) at a low threshold (τ = 0.2).

3.2 Iterative FDoG filtering

Our FDoG filter may be iteratively applied to further enhance the
filter response. In fact, we find that iterative FDoG filtering is often
more effective in improving line coherence in a consistent man-

ner than simply adjusting parameters in a single FDoG application.
After each application of FDoG, we re-initialize the filter input by
superimposing the black edge pixels of the previous binary output
H̃ (obtained by Eq. 10) upon the original image I , then re-apply
FDoG filter to this combined image (ETF remains unchanged).
This process may be repeated until we reach a satisfactory level
of line connectivity and illustration quality. For most of our test
images, a few (2 ∼ 3) iterations were sufficient. Before each ap-
plication of FDoG filter, we may optionally Gaussian-blur the input
to further smooth out the line strokes. Fig. 9 shows the iterative
FDoG filtering (applied to Fig. 4-b1) that successively enhances
the coherence of lines. Notice many of the originally disconnected
components of the fingerprint are re-connected.

(b) 2nd iteration (c) 3rd iteration(a) 1st iteration

Figure 9: Iterative FDoG

3.3 Discussion

The idea of using directional filter kernel is not new. Canny [1986]
discussed the use of directional Gaussian derivative for improving
the reliability in straight line detection. Gabor filters [Grigorescu
et al. 2002] and other steerable filters [Freeman and Adelson 1991]
typically employ a set of oriented, elliptic kernels to help analyze
parallel structures or texture patterns. In anisotropic mean-shift seg-
mentation [Wang et al. 2004], a data-dependent elliptic kernel is
used to capture thin, elongated structures with less regions. Note,
however, conventional anisotropic kernels still use a rigid, straight-
line axis, while we use a ‘curved’ axis representing the local edge
flow, and thus make it more effective in capturing the actual local

structure, whether it is a straight line or a curve with nonzero cur-
vature.

Since our filtering approach is based on the flow of vectors, it is
more closely related to the line integral convolution (LIC) frame-
work [Cabral and Leedom 1993], which is often used for the visu-
alization of vector field (and it is actually used for visualizing ETF
in this paper). The main difference is that we add another dimen-
sion to the conventional LIC in defining the filter kernel (that is,
we expand the curvilinear kernel sideways as shown in Fig. 5). It
should also be noted that the quality of the underlying vector field
(ETF in our case) is crucial in the success of flow-based filtering.

4 Results

Fig. 11 shows line drawing results obtained from the test images
in Fig. 10. Our method performs consistently well on a variety of
images with different characteristics and subjects, such as humans,
animals, plants, buildings, still objects, outdoor scenes, etc. Note
each filter output consists of lines that are clean, smooth, and also
coherent, with little or no dispersement. Also, due to the inher-
ent property of DoG filtering, the captured lines are stylistically
depicted such that the thickness of the line automatically reflects
the significance of the edge. Fig. 12 shows the comparison of
our method with other popular line extraction techniques, includ-
ing Canny’s, mean-shift segmentation, and isotropic DoG. From the
line-drawing perspective, our method outperforms others in that it
is not only capable of capturing ‘perceptually interesting’ structures
but also capable of depicting them with smooth and coherent lines.

Figure 10: Test images

The line drawings in Figs. 1, 2, 11, and 12 were obtained by setting
r = 5 (ETF kernel size), σm = 3.0, σc = 1.0, τ = 0.5 (filtering
parameters) and with 3 FDoG iterations, while other parameters
were set as default values. This shows that our method does not
require sophisticated parameter tuning based on the input data. The
performance mainly depends on the image size and the filter kernel
size. Note that our ETF construction method is an O(n× r2) algo-
rithm where n is the number of image pixels, while FDoG filtering
is of O(n × p × q) where p× q is the number of sample points in
a kernel, determined by σm and σc. In our current implementation,
no attempt for acceleration has been made. For a 512× 512 image
and with default parameters, an application of ETF construction fil-
ter (Eq. 1) typically takes 2 ∼ 4 seconds, and FDoG filter (Eq. 9)
takes 4 ∼ 6 seconds on a 3GHz dual-core PC.

5 Discussion and Future work

Line drawing is generally considered the cornerstone of non-
photorealistic rendering, and we believe the lines constructed by

our technique (and the ETF itself) can be used as the basis for en-
hancing other image-guided NPR effects such as cartooning, pen-
and-ink illustration, stippling, engraving, mosaics, pencil drawing,
painting, and so on. Our flow-based anisotropic filtering frame-
work is general and independent of the underlying filter, and thus
it is possible to similarly adapt other filters to obtain improved re-
sults. In fact, this suggests the possibility of developing a family of
flow-based filters, which we are currently exploring.

Since our FDoG filter builds on the DoG filter, they share some of
the limitations too. For example, a high-contrast background will
be filled with a dense set of lines although this area may be percep-
tually unimportant. Also, like DoG, the lines are formed as pixel
aggregates rather than well-defined strokes (although it is possible
to extract a set of thin strokes from the thick lines by morphologi-
cal processing). While FDoG filter is capable of connecting isolated
edge segments, it still operates on a local kernel and thus a global-
scale subjective contour may be hard to detect.

Possible future research directions include the development of ac-
celeration schemes for the proposed filters (Eq. 1 and Eq. 9). Since
our ETF construction filter is essentially a modified bilateral filter,
it may be possible to employ existing acceleration schemes [Durand
and Dorsey 2002; Weiss 2006]. The FDoG filtering may be simi-
larly accelerated since there is a huge overlap between neighboring
kernels. Also, the local nature of our filters suggests a (GPU-based)
parallel implementation, which could even lead to a real-time per-
formance.

Acknowledgements

This research is supported in part by ARO Grant #W911NF-04-
1-0298 and DARPA/NGA Grant #HM-1582-05-2-2003. It is also
supported by UM Research Board and the ITRC support program.

References

CABRAL, B., AND LEEDOM, L. 1993. Imaging vector fields using
line integral convolution. In Proc. ACM SIGGRAPH 93, 263–
270.

CANNY, J. 1986. A computational approach to edge detection.
IEEE Transactions on Pattern Analysis and Machine Intelligence
8, 6, 679–698.

COLLOMOSSE, J. P., ROWNTREE, D., AND HALL, P. M. 2005.
Stroke surfaces: Temporally coherent non-photorealistic anima-
tions from video. IEEE Transactions on Visualization and Com-
puter Graphics 11, 5, 540–549.

COMANICIU, D., AND MEER, P. 2002. Mean shift: A robust
approach toward feature space analysis. IEEE Trans. Pattern
Anal. Machine Intell 24, 5, 603–619.

DECARLO, D., AND SANTELLA, A. 2002. Stylization and ab-
straction of photographs. In Proc. ACM SIGGRAPH 02, 769–
776.

DECARLO, D., FINKELSTEIN, A., RUSINKIEWICZ, S., AND
SANTELLA, A. 2003. Suggestive contours for conveying shape.
In Proc. ACM SIGGRAPH 03, 848–855.

DEUSSEN, O., HILLER, S., VAN OVERVELD, K., AND
STROTHOTTE, T. 2000. Floating points: A method for comput-
ing stipple drawings. Computer Graphics Forum 19, 3, 40–51.

DURAND, F., AND DORSEY, J. 2002. Fast bilateral filtering for
the display of high-dynamic-range images. In Proc. ACM SIG-
GRAPH 02, 257–266.

(b) Lighthouse (c) Tiger(a) Lena

(e) Flowers (f) Paolina(d) Pantheon

Figure 11: Results

(a) Input (b) Canny (c) Mean-shift (d) Isotropic DoG (e) FDoG

Figure 12: Comparison with other techniques

FISCHER, J., BARTZ, D., AND STRASSER, W. 2005. Stylized
augmented reality for improved immersion. In Proc. IEEE VR,
195–202.

FREEMAN, W., AND ADELSON, E. 1991. The design and use
of steerable filters. IEEE Transactions on Pattern Analysis and
Machine Intelligence 13, 9, 891–906.

GOOCH, B., REINHARD, E., AND GOOCH, A. 2004. Human
facial illustrations. ACM Transactions on Graphics 23, 1, 27–
44.

GRIGORESCU, S. E., PETKOV, N., AND KRUIZINGA, P. 2002.
Comparison of texture features based on gabor filters. IEEE
Transactions on Image Processing 11, 10, 1160–1167.

HAUSNER, A. 2001. Simulating decorative mosaic. In Proc. ACM
SIGGRAPH 01, 573–578.

HAYS, J., AND ESSA, I. 2004. Image and video-based painterly
animation. In Proc. Non-Photorealistic Animation and Render-
ing, 113–120.

HERTZMANN, A., AND ZORIN, D. 2000. Illustrating smooth sur-
faces. In Proc. ACM SIGGRAPH 2000, 517–526.

ISENBERG, T., FREUDENBERG, B., HALPER, N.,
SCHLECHTWEG, S., AND STROTHOTTE, T. 2003. A de-
veloper’s guide to silhouette algorithms for polygonal models.
IEEE Computer Graphics & Applications 23, 4, 28–37.

KALNINS, R. D., DAVIDSON, P. L., MARKOSIAN, L., AND
FINKELSTEIN, A. 2003. Coherent stylized silhouettes. ACM
Transactions on Graphics 22, 3 (July), 856–861.

KANG, H., CHUI, C., AND CHAKRABORTY, U. 2006. A unified
scheme for adaptive stroke-based rendering. The Visual Com-
puter 22, 9, 814–824.

KIM, J., AND PELLACINI, F. 2002. Jigsaw image mosaics. In
Proc. ACM SIGGRAPH 02, 657–664.

LITWINOWICZ, P. 1997. Processing images and video for an im-
pressionist effect. In Proc. ACM SIGGRAPH 97, 407–414.

MARKOSIAN, L., KOWALSKI, M. A., TRYCHIN, S. J., BOUR-
DEV, L. D., GOLDSTEIN, D., AND HUGHES, J. F. 1997. Real-
time nonphotorealistic rendering. In Proc. ACM SIGGRAPH
1997, 415–420.

MARR, D., AND HILDRETH, E. C. 1980. Theory of edge detec-
tion. In Proc. Royal Soc. London, 187–217.

OSTROMOUKHOV, V. 1999. Digital facial engraving. In Proc.
ACM SIGGRAPH 99, 417–424.

SALISBURY, M. P., ANDERSON, S. E., BARZEL, R., AND
SALESIN, D. H. 1994. Interactive pen-and-ink illustration. In
Proc. ACM SIGGRAPH 94, 101–108.

SOUSA, M., AND PRUSINKIEWICZ, P. 2003. A few good lines:
Suggestive drawing of 3D models. Computer Graphics Forum
22, 3, 381–390.

TOMASI, C., AND MANDUCHI, R. 1998. Bilateral filtering for
gray and color images. In Proc. ICCV, 839–846.

WANG, J., XU, Y., SHUM, H.-Y., AND COHEN, M. F. 2004.
Video tooning. ACM Transactions on Graphics 23, 3, 574–583.

WEISS, B. 2006. Fast median and bilateral filtering. In Proc. ACM
SIGGRAPH 06, 519 – 526.

WEN, F., LUAN, Q., LIANG, L., XU, Y.-Q., AND SHUM, H.-
Y. 2006. Color sketch generation. In Proc. Non-Photorealistic
Animation and Rendering, 47–54.

WINNEMÖLLER, H., OLSEN, S., AND GOOCH, B. 2006. Real-
time video abstraction. In Proc. ACM SIGGRAPH 06, 1221–
1226.

XU, C., AND PRINCE, J. L. 1998. Snakes, shapes, and gradient
vector flow. IEEE Transactions on Image Processing 7, 3, 359–
369.

