
Image Morphing Using Deformable Surfaces

Seung-Yong Lee�, Kyung-Yong Chwa�, James Hahn��,

and Sung Yong Shin�

�Department of Computer Science

Korea Advanced Institute of Science and Technology
��Department of EE & CS

The George Washington University

Abstract

This paper presents a new image morphing tech-

nique using deformable surfaces. Drawbacks of previ-

ous techniques are overcome by a physically-based ap-

proach which provides an intuitive model for a warp.

A warp is derived by two deformable surfaces which

specify horizontal and vertical displacements of points

on an image. This paper also considers the control

of transition behavior in a metamorphosis sequence.

The presented technique separates the transition con-

trol from interpolating features making it much easier

to use than the previous techniques. The multigrid re-

laxation method is used to compute a deformable sur-

face for a warp or transition rates. This method makes

the presented image morphing technique fast enough

for an interactive environment.

1 Introduction

Image morphing deals with the metamorphosis of

an image to another image. The metamorphosis gen-

erates a sequence of inbetween images in which an im-

age gradually changes into another image over time.

Image morphing techniques have been widely used in

creating special e�ects for television commercials, mu-

sic videos such as Michael Jackson's Black or White[1],

and movies such as Willow and Indiana Jones and the

Last Crusade[2].

The problem of image morphing is basically to

generate an inbetween image from two given images[1].

A natural inbetween image can be derived by properly

interpolating the positions of features between two im-

ages and their shapes and colors. An image morphing

technique �rst establishes the correspondence of fea-

tures between two images. The correspondence is then

used to compute warps for the images so that the dis-

torted images match the positions and shapes of fea-

tures. A cross-dissolve of colors at each pixel of the

distorted images �nally gives an inbetween image.

A warp is a two-dimensional geometric transfor-

mation and generates a distorted image when applied

to an image. The most di�cult part of image morph-

ing is obtaining a warp which provides a necessary dis-

tortion of an image. A warp is usually derived from the

correspondence of features speci�ed by an animator.

Therefore, an image morphing technique must be con-

venient in specifying features and show a predictable

distortion which reects the feature correspondence.

In mesh warping[2], features are speci�ed by a

nonuniform control mesh, and a warp is computed

by a spline interpolation. Nishita et al.[3] also used

a nonuniform control mesh to specify features and

computed a warp using a two-dimensional free form

deformation and the B�ezier clipping. Feature-based

morphing[1] speci�es features with a set of line seg-

ments and computes a warp by taking weighted aver-

age of the inuences of line segments.

Mesh warping including Nishita's method shows a

good distortion behavior but has a critical drawback

in specifying features. They always require a control

mesh on an image while its features may have an ar-

bitrary structure. Feature-based morphing gives an

easy-to-use and expressive method in specifying fea-

tures but su�ers from unexpected distortions referred

to as ghosts[1]. A warp computed by feature-based

morphing does not interpolate the variation of fea-

tures, but approximates them as exempli�ed in Section

5. This prevents an animator from realizing a precise



warp required for a complex metamorphosis. Further-

more, the computation time for a warp is proportional

to the number of mesh points or line segments in these

techniques. This is disadvantageous when a compli-

cated feature set must be used.

These drawbacks can be overcome by a physically-

based approach which provides an intuitive model for

a warp. Consider an image printed on a sheet of rub-

ber. When several points on the sheet are moved, the

deformation of the sheet makes the image appear dis-

torted. The distorted image conforms to the displace-

ments of points and shows proper distortions between

moved points. If we specify the features on an image

with a set of points, the displacements of points can be

derived from the correspondence of features between

images. There have been a number of results[4, 5, 6]

in exible object modeling that give concrete theory

and various techniques for developing this approach.

This paper takes the rubber image model and con-

siders horizontal and vertical deformation of the sheet,

independently. The deformation problem then reduces

to deriving two deformable surfaces which specify hor-

izontal and vertical displacements of points on the

sheet. The resulting surfaces are two and a half dimen-

sional and can be represented by explicit functions,

z = f(x; y). The requirements for a surface are repre-

sented by energy terms, and the surface is computed

by minimizing the sum of these terms. The multigrid

relaxation method[7] is then used to derive a numerical

solution, showing a great enhancement in computation

time compared to the conventional relaxation schemes.

Another interesting but not yet fully investigated

problem of image morphing is the control of transi-

tion behavior in a metamorphosis sequence. In gen-

erating an inbetween image, the rate of transition is

usually applied uniformly over all points on the im-

age. This results in an animation in which the entire

image changes synchronously to another image. If we

could control the transition rates on di�erent parts of

an inbetween image independently, a more interesting

animation could be obtained.

Mesh warping and Nishita's method control the

transition behavior with a mesh used for specifying

features. Mesh warping assigns a transition curve for

each point of the mesh, and the curves determine the

transition rate in interpolating the position of each

point. Nishita's method speci�es the speed of trans-

formation by a B�ezier function de�ned on the mesh.

This paper controls the transition behavior by

specifying transition curves for several points on an

image. These points are not necessarily the same as

those used for specifying features. Transition rates on

an inbetween image are derived from the curves by

constructing a deformable surface. This approach sep-

arates the control of transition from interpolating fea-

tures making it much easier to use than the previous

techniques.

2 Deformable surface construction

The construction of a smooth surface which in-

terpolates a set of scattered points has been inves-

tigated in computer vision to solve the visual sur-

face reconstruction problem. Grimson[8] �rst applied

the thin plate surface model[9] to the problem and

used the conjugate gradient method for a numerical

solution. Terzopoulos extended the result to accom-

modate discontinuities[10] and presented a multilevel

algorithm for quickly solving a hierarchy of discrete

problems[11]. We adopt the thin plate surface model

and modify the model to control the inuence of defor-

mation around feature points. In obtaining a numer-

ical solution, we use the multigrid relaxation method

to accelerate the convergence.

2.1 The surface model

Consider a rectangular thin plate placed on the

xy-plane and a set of points scattered in the space.

Let each point be connected to the plate by an ideal

vertical spring of length zero. The stretching of springs

gives rise to a potential energy which reduces as the

plate is deformed toward the points. When the plate

is deformed, the elasticity of the plate prevents a strict

bending, resulting in a smooth shape. If the plate is

stuck to the xy-plane with a glue, the deformation

caused by a spring is localized depending on the vis-

cosity of the glue.

This plate model provides an intuitive interpreta-

tion of the surface construction problem. The problem

takes a set P of points as the input and �nds a C
1-

continuous surface which interpolates the points in P .

A surface represents a shape of the plate which can

be speci�ed by an explicit function z = f(x; y). The

interpolation constraint can be forced by minimizing

the potential energy due to springs,

EI(f) = �

pX
k=1

(f(xk; yk) � zk)
2
: (1)

(xk; yk; zk) is the coordinates of a point in P and p

denotes the size of P . � is a positive real spring con-

stant. It controls the tightness of the interpolation

constraints.

The elasticity of the plate can be approximated

by minimizing the integration of curvature variations



over the plate,

EC(f) =

ZZ



[(
@
2
f

@x2
)2+2(

@
2
f

@x@y
)2+(

@
2
f

@y2
)2]dxdy: (2)


 denotes the rectangular domain of the xy-plane

on which the surface f is de�ned. Because a strict

bending generates an in�nite curvature variation,

the resulting surface f has continuous �rst partial

derivatives[10]. The area of deformation can be re-

lated to the glue between the plate and the xy-plane.

When the plate detaches from the xy-plane, the glue

gives rise to an energy which can be estimated by

EL(f) = �

ZZ



f
2
dxdy: (3)

The parameter � corresponds to the viscosity of the

glue. It controls the resistance of the surface f to

detachment from the xy-plane.

Consequently, the desired surface f can be ob-

tained by minimizing the following energy functional,

which is the sum of energy terms (1), (2), and (3).

E(f) =
1

2
(EC(f) + EL(f) +EI(f)): (4)

When the parameter � is su�ciently large, the con-

structed surface f strictly interpolates the points in

P . A large � permits the surface f to be apart from

the xy-plane only in the small neighborhood of a point

in P .

The calculus of variations[9] suggests a powerful

technique for generating the desired surface. If a sur-

face f minimizes the energy functional (4), the �rst

variational derivative of (4) must vanish all over the

domain 
. That is,

�E

�f
= [

@
4
f

@x4
+2

@
4
f

@x2@y2
+
@
4
f

@y4
]+�f+�(f(xk ; yk)�zk) � 0:

(5)

The last term appears only at (xk; yk) in 
 for which

(xk; yk; zk) is a point in P . The partial di�erential

equation (5) is known as the Euler-Lagrange equation.

Unfortunately, it is in general impossible to obtain an

analytic solution for an Euler-Lagrange equation. This

suggests a numerical technique applied to a discrete

version of the equation.

2.2 Numerical solution

We discretize the domain 
 to a M � N regu-

lar grid and represent a surface f by its values at the

nodes on the grid. Each node is indexed by integers

(i; j) and fij denotes the value of f at (i; j). The point

set P is converted to a set of (i; j; zij) which implies

that fij should have the value zij. The standard �-

nite di�erence approximation transforms the di�eren-

tial equation (5) into a system of linear equations[12].

The linear system contains MN unknowns and

MN equations. If the nodal variables comprising the

function f are collected into the MN dimensional vec-

tor f , the system may be written in a matrix form,

Af = b: (6)

A is a MN �MN matrix which comprises the coe�-

cients multiplied by nodal variables. Due to the local

nature of a �nite di�erence discretization, A has the

desired computational property of bandedness. b is

an MN dimensional vector which contains zeros and

constraints zij multiplied by �.

Many types of algorithms have been developed for

solving a large banded linear system. Relaxation al-

gorithms such as Jacobi, Gauss-Seidel, or successive-

overrelaxation methods exploit the bandedness of the

matrixA to solve the problem e�ciently[12]. A major

drawback of a relaxation scheme is that it converges

slowly in general. The multigrid approach was devel-

oped to overcome this drawback and has been actively

researched by the numerical analysis community[7, 13].

The multigrid approach applies the ideas of nested

iteration and coarse grid correction to a hierarchy of

grids[7]. The computational e�orts can be estimated

in terms of the work unit W which is de�ned as the

amount of computation required for one relaxation on

the �nest grid. The necessary computation e�ort is

less than 7=2�W , where � is the number of relaxation

on a grid[7]. Because � is usually small, this is a great

enhancement compared to the conventional relaxation

schemes. It has been proven that the multigrid ap-

proach requires O(MN ) operations to reduce the error

to the truncation error level[7].

Figure 1 shows surface construction examples in

which the �nest and coarsest grids are of size 64� 64

and 16�16, respectively. In the examples, � is ten and

it takes 0.8 seconds on a SGI 4D/35 for the multigrid

relaxation method to generate a surface. Figure 1 also

demonstrates how a surface shape can be controlled by

the parameter �. When the size of the grid is 512�512,

its computation time is 16.9 seconds.

3 Image morphing using deformable

surfaces

This section presents an image morphing tech-

nique using the surface model given in Section 2. The

�rst subsection de�nes three subproblems of image



(a) � = 0, � = 100

(b) � = 0.05, � = 100

Figure 1. Surface construction examples: black

spots represent the interpolated points

morphing. The following subsections solve the sub-

problems.

3.1 Problems

When two images I0 and I1 are given, the image

morphing problem is to �nd a sequence of inbetween

images I(t) such that I(0) = I0 and that I(1) = I1.

We assume that time t varies from 0 to 1 when the

source image I0 continuously changes to the destina-

tion image I1. Let W0 be the warp function which

speci�es a corresponding point on I1 for each point on

I0. When applied to I0, W0 has to generate the dis-

torted image which matches I1 in the positions and

shapes of features. Its inverse function W1 distorts I1
toward I0. To generate an inbetween image I(t), we

derive two warp functions W0(t) and W1(t) from W0

and W1 by linear interpolation in time t. I0 and I1

are then distorted by W0(t) and W1(t), resulting in

intermediate images I0(t) and I1(t), respectively. The

corresponding features on I0 and I1 have the same po-

sitions and shapes on I0(t) and I1(t). Finally, I(t) is

obtained by cross-dissolving the colors between I0(t)

and I1(t). That is,

W0(t) = (1� t) � U + t �W0 (7)

W1(t) = t � U + (1� t) �W1 (8)

I0(t) = W0(t) � I0 (9)

I1(t) = W1(t) � I1 (10)

I(t) = (1 � t) � I0(t) + t � I1(t); (11)

where U denotes the identity warp function, andW �I

denotes the application of a warp W to an image I.

Time t in the above formulae controls the tran-

sition rate which is uniform on the inbetween image

I(t). The rate of transition may be made di�erent

from point to point. A transition function T speci�es a

rate of transition for each point on an image over time.

Let T0 be a transition function de�ned on the source

image I0. In generating I(t), T0(t) determines how far

each point on I0 moves to the corresponding point on

the destination image I1. T0(t) also determines how

much the color of each point on I0 is reected on the

corresponding point on I(t). With the correspondence

of points between I0 and I1, T0 can be converted to a

transition function T1 de�ned on I1. T1 speci�es the

movements and color variations required for points on

I1. To control the movements of points, we replace

time t in formulae (7) and (8) with T0(t) and T1(t),

respectively. To manipulate color transformation, we

rearrange formulae (9), (10), and (11). T0(t) and T1(t)

are then used to attenuate the color intensities of I0
and I1. That is,

W0(t) = (1� T0(t)) � U + T0(t) �W0

W1(t) = T1(t) � U + (1� T1(t)) �W1

I0(t) = W0(t) � ((1 � T0(t)) � I0)

I1(t) = W1(t) � (T1(t) � I1)

I(t) = I0(t) + I1(t):

The transformation of positions and colors can be in-

dependently handled by specifying two transition func-

tions.

To complete the above procedure for image mor-

phing, the following three problems need further in-

vestigating.

� How to get the warp function W0 and its inverse

W1 ?

� How to get the transition function T0 and its cor-

respondent T1 ?

� How to apply a warp function to an image ?



3.2 Warp functions

To derive the warp function W0, an animator is

required to specify a set S of point pairs overlaid on

the images I0 and I1. The set S represents the feature

correspondence between I0 and I1 which the animator

intends to realize. W0 is composed of two functions

X and Y which determine its x- and y-components,

respectively.

W0(x; y) = (X(x; y); Y (x; y))

We use the x-displacement of each point pair in S to

derive the function X. We �rst de�ne X as

X(x; y) = x+�X(x; y):

The function �X must satisfy the constraints that

�X(x0; y0) = �x = x1 � x0;

where pi = (xi; yi), i = 0; 1, and (p0; p1) 2 S,

because W0 maps the point p0 to the point p1 for each

point pair (p0; p1) in S. �X can be obtained by gen-

erating a deformable surface in Section 2, where the

set of �x from S plays the role of interpolation con-

straints. The function �Y and Y can be symmet-

rically derived by the same approach. The resulting

warp function W0 properly reects the guidance of the

animator by interpolating the deviations �x and �y.

The warp function W1 is not necessarily the in-

verse ofW0 in the mathematical sense. The role ofW1

is to distort the image I1 so that the point p1 moves to

the point p0 for each pair (p0; p1) in S. Therefore, W1

can be obtained in the same way as W0 if we exchange

the role of I0 and I1 as the source and destination

images.

In constructing surfaces for the functions �X and

�Y , large � is usually used to get a warp function

which exactly moves a point to its correspondent for

each point pair in S. Parameter � controls how far the

movement of a point is reected on its neighborhood.

Large � makes the function �X and �Y be zero over

the domain except on the vicinity of the interpolated

points. This results in a warp function which distorts

an image only near the feature points.

3.3 Transition functions

To obtain the transition function T0, an animator

selects a set P0 of points on the image I0 and speci�es

a transition curve for each point in P0. The set P0

is not necessarily the same as the point set used for

warp functions. A transition curve gives the rates of

transition over time as shown in Figure 2. The set P0
and the transition curves represent the metamorphosis

rate
Transition

0

1

1
Time

Figure 2. A transition curve

scenario designed by the animator. For a given time t,

the function T0(t) can be derived by a method similar

to that used for the function X. We �rst de�ne T0(t)

as

T0(x; y; t) = t+�T (x; y; t):

The function �T must satisfy the constraint that

�T (x; y; t) = �t = C(x; y; t)� t; for (x; y) 2 P0;

where C(x; y; t) denotes the transition rate at time t

computed from the transition curve speci�ed for the

point at (x; y). �T can then be obtained by construct-

ing a surface which interpolates the set of �t at points

in P0. The resulting T0 properly propagates the spec-

i�ed transition curves all over the image I0.

The transition function T1 has to specify the tran-

sition behavior for the image I1 which is symmetric

to T0. To obtain T1, we �rst apply the warp function

W0 to the point set P0, getting a point set P1 on I1.

Then, the transition curve speci�ed for each point in

P0 is assigned to the corresponding point in P1. With

the point set P1 and the transition curves, T1 can be

computed by the technique used for T0. Because W0

provides the correspondence between I0 and I1, the re-

sulting T1 realizes the metamorphosis scenario which

is the same as that guided by T0.

The roles of parameters � and � in computing a

transition function is similar to that for a warp func-

tion. Parameter � controls the inuence area of the

transition behavior at a point which is di�erent from

the ordinary transition rate t.

When a sequence of inbetween images is generated

with a transition function T , a surface should be con-

structed for determining the function T (t) at each time

t. In this case, the solution for a surface is used for the

initial solution for the surface at the next time step.

Because the surfaces change smoothly with time, this

approach provides a good initial solution and reduces

the computation time.



3.4 Application of a warp function to an
image

Let I be an image and W a warp function which

speci�es a new position for each point on I. When

W is applied to I, each pixel on I is considered as a

square that may be transformed into a quadrilateral

on a distorted image I0[2]. The resulting quadrilateral

from a pixel often straddles several pixels on I
0 or lies

in one pixel. The partial contributions are handled by

scaling the intensity of the pixel on I in proportion to

the fractional part of the pixel on I
0 that it covers.

To implement the mapping, we should evaluate a

warp function W at each corner of pixels on a given

image I. Hence, when the domain of W is discretized

for a numerical solution, the size of a grid is chosen

as the resolution of I. Once W has been computed

on the grid, we can perform the color blending by the

blending hardware of a SGI machine[14].

4 Extensions

4.1 General feature control primitives

The relaxations spends most computation time

in constructing a surface by the multigrid relaxation

method. Because the number of interpolated points

is not related to the number of required relaxations,

the total computation time remains nearly constant re-

gardless of the number of feature points. This strong

merit makes it possible to easily extend the feature

control primitives to include line segments and curves.

When a pair of line segments are speci�ed to es-

tablish the correspondence of features between images,

a discretization of the line segments generates a set

of corresponding point pairs. When curves are used

to control feature correspondences, the Catmull-Rom

spline curves[15] are adopted to interpolate the control

points speci�ed by an animator. By properly discretiz-

ing the parameter space and computing the points on

the curves, we get a set of corresponding points lying

on the matching curves. Theses generalized primitives

can also be used for controlling transition functions.

4.2 Procedural transition functions

To derive a good metamorphosis, we must match

the positions of corresponding features on an inbe-

tween image. Once the positions of corresponding

features are aligned, the rate of transition at each

point has a freedom in determining its value. Our

image morphing technique always generates an inbe-

tween image on which corresponding points on given

images match their positions whatever transition func-

tion is speci�ed. Therefore, procedural transition func-

tions can be used to generate various interesting in-

between images. For example, the transition func-

tion T0(x; y; t) = x=xmax generates an inbetween im-

age which gradually changes from the source image

to the destination image when it is scanned from left

to right. A procedural transition function de�ned on

an image can be converted to the transition function

for the other image by the correspondence of points

between the images.

5 Experiments

5.1 Comparison with the feature-based
image morphing

The presented image morphing technique can be

compared with the feature-based image morphing[1]

when line segments are used for specifying features.

Figure 3 shows how well our warp function distorts an

image to match the variations of features.

Figure 3(a) is the original image in which a letter

`F' lies on a mesh. We overlay line segments on the im-

age and move them to obtain distorted images. Figure

3(b) is generated when the warp function is computed

by the feature-based image morphing technique. In

the image, the lower bar in `F' does not shrink in the

amount speci�ed by the movements of line segments.

The right end of the upper bar in `F' shows a distortion

while the line segment on it is �xed. These abnormal

distortions result from that the e�ects of two or more

line segments are blended by simple weighted averag-

ing. In Figure 3(c), the warp function is computed by

the technique in this paper. Figure 3(c) exactly reects

the movements of line segments and shows proper dis-

tortions over the entire image.

Figure 3(d) and 3(e) show the images obtained

when the line segments on Figure 3(a) are moved to

distort `F' to the letter `T'. The feature-based im-

age morphing technique generates the image in Fig-

ure 3(d), which does not show the desired distortion.

In the image, the inuences of line segments crumble

each other and the displacement or rotation of any

line segment is not properly reected. In contrast, the

technique presented in this paper gives the exact dis-

tortion, as shown in Figure 3(e).

We use a workstation SGI Crimson(R4000) to gen-

erate examples in this section. An image in Figure

3 is 420 � 420 and it takes 12 seconds for the pre-

sented technique to generate a distorted image. The

feature-based image morphing requires 38 seconds to

generate a distorted image. When the number of line

segments gets larger, the computation time increases



(a)

(b) (c)

(d) (e)

Figure 3. Comparison of warps with feature-

based image morphing

in the feature-based image morphing while the time

remains nearly constant in the presented technique.

5.2 Examples

Figure 4 shows a metamorphosis example. Figure

4(a) is a face image of the �rst author. Figure 4(b) is

an image of a cat. Figures 4(c) and 4(d) show the fea-

ture control primitives overlaid on the images. Figure

4(e) is the middle image on which the same transition

rate is applied all over the image. Figure 4(f) is an in-

between image on which transition rates are di�erent

part by part. The eyes, nose, and mouth of the im-

age look more like the human face than the remaining

parts. Figure 4(g) and 4(h) are examples of applying

a procedural transition function, T0(x; y; t) = x=xmax

and T0(x; y; t) = (sin(4�x=xmax) + 1)=2, respectively.

The resolution of an image in Figure 4 is 400�400

and it takes 4.7 seconds to generate a surface on a

400 � 400 grid. When generating an inbetween im-

age, two surfaces are generated to compute each of

the warp functions W0 and W1. Hence, about 18.8

seconds are necessary to generate the image in Figure

4(e). For an inbetween image with transition rates dif-

ferent part by part, two more surfaces are constructed

for the transition functions T0 and T1. Then, it takes

28.2 seconds to generate the image in Figure 4(f). Ex-

cept the evaluation of procedural transition functions,

the computation required for the images in Figure 4(g)

and 4(h) is the same as that for the image in Figure

4(e).

In Figure 5, two di�erent expressions of a person

are interpolated to generate a facial animation. The

top-left image is the source and the bottom-left is the

destination. The inbetween images show that the fea-

tures are nicely controlled by the presented technique.

For example, the motion of the mouth looks natural

in the inbetween images. Each image in Figure 5 is

449 � 423 and it takes 23.6 seconds to generate an

inbetween image.

6 Conclusions

This paper presents a new image morphing tech-

nique using deformable surfaces. The technique gives

freedom to an animator in designing a metamorphosis

because features on an image are speci�ed by an arbi-

trary point set. A warp exactly reects the correspon-

dence of features between images and shows intuitive

distortions among feature points.

We separate the problem of controlling transition

behavior from aligning the features and solve the prob-

lem with a transition function. An animator can re-

alize a desired transition scenario by specifying tran-

sition curves at several points on an image. A proce-

dural transition function can be also used to generate

interesting inbetween images.

The multigrid relaxation method is used to com-

pute a surface for a warp or transition function. This

method makes the presented image morphing tech-

nique fast enough for an interactive environment. Fur-

thermore, the computation time remains nearly con-

stant when the number of control points increases.

Hence, the feature control primitives can be extended

to include the line segments and spline curves which

are more convenient for specifying features.

The most tedious part of image morphing is to es-

tablish the correspondence of features between images

by an animator. Techniques of computer vision may

be employed to automate the problem. An edge de-



tection algorithm can provide important features on

images, and an image analysis technique may be used

to �nd the correspondence between detected features.

References

[1] T. Beier and S. Neely. Feature-based image metamor-
phosis. Computer Graphics, 26(2):35{42, 1992.

[2] G. Wolberg. Digital Image Warping. IEEE Computer
Society Press, 1990.

[3] T. Nishita, T. Fujii, and E. Nakamae. Metamorpho-
sis using B�ezier clipping. In Proceedings of the First

Paci�c Conference on Computer Graphics and Appli-

cations, pages 162{173, Seoul, Korea, 1993.

[4] D. Terzopoulos, J. Platt, A. Barr, and K. Fleischer.
Elastically deformable models. Computer Graphics,
21(4):205{214, 1987.

[5] D. Terzopoulos and K. Fleischer. Modeling inelas-
tic deformation: Viscoelasticity, plasticity, fracture.
Computer Graphics, 22(4):269{278, 1988.

[6] J. C. Platt and A. H. Barr. Constraint methods for
exible models. Computer Graphics, 22(4):279{288,
1988.

[7] W. L. Briggs. A Multigrid Tutorial. SIAM, 1987.

[8] W. Grimson. An implementation of a computational
theory of visual surface interpolation. Computer Vi-

sion, Graphics, and Image Processing, 22:39{69, 1983.

[9] I. Gelfand and S. Fomin. Calculus of Variations.
Prentice-Hall, 1963.

[10] D. Terzopoulos. Regularization of inverse visual prob-
lems involving discontinuities. IEEE Transaction on

Pattern Analysis and Machine Intelligence, PAMI-
8(4):413{424, 1986.

[11] D. Terzopoulos. Multilevel computational processes
for visual surface reconstruction. Computer Vision,

Graphics, and Image Processing, 24:52{96, 1983.

[12] W. H. Press, S. A. Teukolsky, W. T. Vetterling, and
B. P. Flannery. Numerical Recipes in C. Cambridge
University Press, second edition, 1992.

[13] A. Brandt. Multi-level adaptive solutions to
boundary-value problems. Mathematics of Computa-

tion, 31(138):333{390, 1977.

[14] Silicon Graphics Inc. Graphics Library Programming
Guide.

[15] G. Farin. Curves and Surfaces for Computer Aided

Geometric Design. Academic Press, second edition,
1990.



(a) (b)

(c) (d)

(e) (f)

(g) (h)

Figure 4: A metamorphosis example: from a person to a cat



Figure 5: A facial animation: the top-left is the source image and the bottom-left is the destination image


