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Abstract

We propose a novel approach for detecting two kinds of partial blur, defocus and motion blur, by training a deep convolutional
neural network. Existing blur detection methods concentrate on designing low-level features, but those features have diffi-
culty in detecting blur in homogeneous regions without enough textures or edges. To handle such regions, we propose a deep
encoder-decoder network with long residual skip-connections and multi-scale reconstruction loss functions to exploit high-level
contextual features as well as low-level structural features. Another difficulty in partial blur detection is that there are no avail-
able datasets with images having both defocus and motion blur together, as most existing approaches concentrate only on either
defocus or motion blur. To resolve this issue, we construct a synthetic dataset that consists of complex scenes with both types
of blur. Experimental results show that our approach effectively detects and classifies blur, outperforming other state-of-the-art
methods. Our method can be used for various applications, such as photo editing, blur magnification, and deblurring.

CCS Concepts
•Computing methodologies → Image processing;

1. Introduction

Partial blur of photographs is caused by various reasons such as
shallow depth-of-field, camera motions, and moving objects. Un-
intentional blur generally degrades image quality, and many ex-
isting methods including defocus map estimation [ZS11, SXJ15,
PTCK17] and motion blur kernel estimation [HJSHS11, WSZP12,
SCX∗17] concentrate on estimating blur kernels to remove such
blur. However, accurate blur kernel estimation is a severely ill-
posed problem and existing methods usually handle only one type
of blur. Meanwhile, blur detection and classification, i.e., localiz-
ing partial blur and identifying its type, are also important tasks
for various applications, such as image editing [BD07, ARG18],
image quality assessment [SBC12], image restoration [EGA∗13],
saliency detection [JLYP13], and video deblurring [CWL12,
LJLS13, ZZH17]. Image deblurring can also benefit from blur
detection and classification. While most existing deblurring ap-
proaches [HJSHS11, WSZP12] cannot manage different types of
blur in one image, simple combination of blur detection and clas-
sification with an existing deblurring method could handle such a
case (Sec. 6.1).

Most blur detection approaches [LLJ08, CZF10, SLT11, SXJ14,
TWH∗16, GK17] designed hand-crafted features to distinguish
blurred and non-blurred image regions. Even though such features
are usually discriminative around edges, it is hard to use them for

∗Both authors have equal contiribution on this paper.

determining the existence of blur in homogeneous regions without
enough texture or edges (Fig. 1). Some defocus blur map estima-
tion methods [ZS11, SXJ15, PTCK17] estimate the amount of blur
around edges, and propagate the estimates to homogeneous regions.
However, this propagation based approach still has difficulty in fill-
ing large homogeneous regions with accurate blur estimation.

Deep convolutional neural networks (DCNN) have led remark-
able successes in various image processing tasks, e.g., semantic
segmentation [LMSR17, NHH15] and saliency detection [LY15,
HCH∗17]. A few deep learning based approaches have been pro-
posed for blur detection and estimation [HFF∗18,PTCK17]. These
approaches detect blur from small patches using CNN features, and
reconstruct a full blur map by merging or interpolating the patch re-
sponses. These CNN-based methods outperform previous blur de-
tection and estimation methods, but CNN features with small re-
ceptive fields have limitation on detecting blur in homogeneous re-
gions. Recently, Ma et al. [MFL∗18] proposed to utilize high-level
features to deal with homogeneous regions. However, their method
does not consider any low-level features, so it produces less accu-
rate and blurry results.

In this paper, we propose an effective deep encoder-decoder net-
work with long residual skip-connections to detect and classify dif-
ferent types of partial blur, i.e., defocus and motion blur. Differently
from existing methods using either low-level features [HFF∗18,
PTCK17] or high-level features [MFL∗18], our network considers
both low-level structural features and high-level contextual features
to accurately detect blur around structural edges as well as in ho-
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Figure 1: Example of a challenging case in blur detection. The
blue and yellow boxes correspond to sharp regions, whereas the
red one corresponds to a defocus-blur region. While the blue box
corresponds to a sharp region, it is hard to determine the region is
blurred or not at the patch level because it has no edges or textures.

mogeneous regions. To effectively train our network while exploit-
ing both high- and low-level features together, we use multi-scale
reconstruction loss functions.

To properly train our deep network, it is essential to have a
good dataset. Unfortunately, there are no such datasets that suit
our purpose. To the best of our knowledge, CUHK blur detection
dataset [SXJ14] is the only dataset publicly available. However, it
contains only 1,000 labeled images. Furthermore, all the images in
CUHK dataset have only one type of blur and no images have de-
focus and motion blur together. To resolve this issue, we generate a
synthetic dataset that contains images with both motion and defo-
cus blur together so that our network can be trained to discriminate
different types of blur. We employ our dataset for fine-tuning our
network after training with CUHK dataset. To prevent overfitting
and facilitate training, we also utilize a pre-tained model, VGG-
19 [SZ14], to initialize our encoder network, which was trained for
image recognition with a large dataset. It provides well-trained low-
level features and helps our network effectively exploit high-level
semantic information.

Experimental results show that our approach is effective and out-
performs the state-of-the-art methods for blur detection. We also
demonstrate possible applications of our method: image editing,
blur magnification, and deblurring.

The main contributions of our work are summarized as follows:

• We propose an effective deep encoder-decoder network with
long residual skip-connections to detect two kinds of blur: de-
focus and motion blur. Our multi-scale reconstruction loss func-
tions help our network reconstruct precise blur maps by fully
utilizing both high- and low-level features.

• We construct a synthetic dataset that consists of complex scenes
including both defocus and motion blur together. Fine-tuning
with the dataset makes our network learn discriminative features
between defocus and motion blur.

2. Related Work

Blur detection and classification Many effective blur detection
methods based on hand-crafted features have been proposed. Liu
et al. [LLJ08] detect partial blur using four local blur features and
classify two kinds of blur. Chakrabarti et al. [CZF10] analyze di-
rectional blur via local Fourier transform. Su et al. [SLT11] pro-
pose a method that employs singular value information to measure
blurriness. The method also classifies blur into different types us-
ing alpha channel constraints. Shi et al. [SXJ14] propose a set of
blur features in multiple domains such as gradient histogram span,
kurtosis, and data-driven local filters. They also provide a real blur
detection dataset containing 1,000 images labeled with pixel-level
annotation. Tang et al. [TWH∗16] introduce image spectrum resid-
ual to estimate a coarse blur map, and an iterative update algorithm
to refine the blur map by filling homogeneous regions. Golestaneh
and Karam [GK17] detect spatially-varying blur by applying multi-
scale fusion to high frequency Discrete Cosine Transform (DCT)
coefficients. Although all these methods can effectively detect blur
around edges, blur in homogeneous regions are not properly ana-
lyzed as their hand-crafted features do not properly handle homo-
geneous regions.

Defocus map estimation Defocus map estimation methods com-
pute the amounts of spatially-varying defocus blur for a given im-
age. They are closely related to blur detection in that partial blur is
detected and a blur map is generated. Zhuo and Sim [ZS11] obtain
a sparse defocus map from gradient ratios between input and re-
blurred image patches. A sparse defocus map is then interpolated
to produce a full defocus map. Shi et al. [SXJ14] develop a sparse
representation for detecting just noticeable blur and estimating its
strength. However, as these methods also estimate a sparse defocus
map from edges and propagate blur information to homogeneous
regions, blur in large homogeneous regions is often inaccurately
estimated.

Deep learning based methods Several deep learning based meth-
ods have been introduced to understand image blur. Huang et
al. [HFF∗18] detect local blur regardless of its type using a CNN
that consists of six layers including fully connected (fc) layers.
They showed that data-driven CNN features of multi-scale patches
are more discriminative than previous hand-crafted features. How-
ever, their method suffers from inefficiencies of fc layers and pro-
cessing many small patches, and has difficulty in distinguishing
blur in homogeneous regions due to narrow receptive fields. Be-
sides, their results are not precisely aligned to original image struc-
tures (e.g., object boundaries) as blur is detected in a patch-wise
manner. Park et al. [PTCK17] present a state-of-the-art defocus
map estimation method that uses both hand-crafted and deep CNN
features. Their method has two stages. The first stage estimates a
sparse defocus map from edges using their proposed features in
small patches. The second stage propagates local blur informa-
tion around edges to nearby smooth regions using matting Lapla-
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Figure 2: Examples of the ground truth labels in CUHK dataset
and our blur detection results. In a ground truth map, white is
blurred and black is non-blurred regardless of blur types. In our
result, blue is motion blur, red is defocus blur, and black is no-blur.

cian [LLW08]. However, their approach often estimates inaccurate
blur in large homogeneous regions, and does not consider motion
blur. Recently, Ma et al. [MFL∗18] presented a fully convolutional
network for blur detection, which is trained in an end-to-end man-
ner. In their approach, a low-resolution blur map is first obtained us-
ing high-level features, and then the final blur map is reconstructed
by bilinear upsampling. However, their approach does not consider
low-level structural features either in low-resolution blur map esti-
mation or upsampling, so their blur maps are blurry and less accu-
rate near structural edges.

Our approach is different from previous deep learning based
methods in two aspects. First, we utilize a well-designed encoder-
decoder network to exploit both high- and low-level features to-
gether. Our network effectively detects blur in large homogeneous
regions with large receptive fields, while preserving structural in-
formation such as edges by exploiting low-level features. As a re-
sult, our method can produce significantly improved results both
quantitatively and qualitatively compared to previous methods.
Second, our network can distinguish defocus and motion blur as
well as localizing them. For training our network to learn discrim-
inative features between both blur types, we construct a new syn-
thetic dataset that consists of complex scenes including defocus and
motion blur together.

3. Dataset for Blur Detection and Classification

3.1. Blur detection dataset

CUHK dataset [SXJ14], which is the only publicly available blur
detection dataset, consists of 704 defocus and 296 motion blur im-
ages. The images are equipped with ground truth blur maps labeled
by human annotators, each pixel of which indicates whether the
pixel is blurred or not. While the dataset has both defocus and mo-
tion blur images, each image is assumed to be blurred by only one
type of blur, and the blur type for each image is given as an addi-
tional tag. Fig. 2 shows images of CUHK dataset. The left and mid-

blurred image ground truth blur map

Figure 3: Our synthetic dataset. Each image in CUHK
dataset [SXJ14] has either motion blur or defocus blur, but not
both. For handling images with both types of blur, we syntheti-
cally generate images with both types of blur (left) and their ground
truth blur maps (right) utilizing salient object detection dataset and
CUHK dataset. In ground truth blur maps on the right, black, blue
and red indicate no-blur, motion blur, and defocus blur, respec-
tively.

dle columns show blurred images and their corresponding ground
truth blur maps, respectively.

To train our network for distinguishing defocus and motion blur,
we need separate labels for different blur types. We convert the
ground truth pixel labels in the blur maps of CUHK dataset by re-
flecting the blur types of images. Then, using the converted blur
maps together with our synthetic dataset, which will be discussed
next, we train our network to classify two kinds of blur at each pixel
as well as to detect them. The right column in Fig. 2 shows results
of our network, where blue and red denote motion and defocus blur,
respectively.

3.2. Synthetic dataset for blur classification

Most images in CUHK dataset do not have motion and defocus
blur together. While some images in the dataset actually have both
types of blur, they are still annotated as if they have only one type
of blur. Consequently, training with only CUHK dataset makes a
network less effective in distinguishing different types of blur in an
image, as will be shown in Sec. 5.4. To resolve this limitation, we
construct a new synthetic dataset whose images have both types of
blur together with pixel-wise annotations (Fig. 3).

We generate our synthetic dataset using CUHK dataset and a
salient object detection dataset [LY15]. The salient object detec-
tion dataset consists of 4,000 images and their corresponding bi-
nary masks indicating salient objects. Algorithm 1 summarizes our
process of generating the synthetic dataset. Object motion blur is
usually modeled by locally linear blur kernels [CDSAP13, KL14]
as it is usually caused by fast moving objects like cars. Therefore,
we use linear blur kernels to generate motion blur in an image. We
finally obtain 8,460 images that have both defocus and motion blur
in our synthetic dataset.
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Figure 4: Our blur detection and classification network with multi-scale reconstruction loss functions.

Algorithm 1 Synthetic blur dataset generation
B← randomly sampled 564 images among the defocus blur im-
ages in CUHK dataset
for each image b in B do

F ← randomly sampled 15 images among the salient object
detection dataset.

for each image f in F do
m← salient object mask of f
s← salient object extracted from f using m
blur s and m using a random linear motion blur kernel
blend b and the blurred s using alpha-blending with the

blurred m to impose the motion-blurred salient object onto b
end for

end for

4. Blur Detection and Classification using DCNN

4.1. Network architecture

Our network takes a 3-channel RGB image as input, and outputs
a 3-channel blur map, each channel of which corresponds to mo-
tion blur, defocus blur, or no-blur. Our network is built upon an
encoder-decoder framework with long skip-connections, similarly
to U-Net architecture [RFB15] used for various image processing
problems [SDW∗17, ZYW∗17, HGO18]. Fig. 4 shows the detailed
structure of our network.

The encoder network consists of four max-pooling and 16 con-
volution layers, similarly to VGG-19 [SZ14] but without fully con-
nected layers. Thanks to max-pooling and convolution layers of the
encoder, our network has much larger receptive fields than pre-
vious deep learning based approaches [PTCK17, HFF∗18]. As a
result, our network can utilize higher level features with larger
contextual information. We design our network as fully convolu-
tional for efficient computation and for handling images of arbi-
trary sizes, in contrast to previous blur detection methods that use
small patches sampled from the input image. The decoder network
consists of four deconvolution and 15 convolution layers to upsam-
ple features and generate an output of the same size as the input.

Batch-normalization is not used for our network as we found that it
decreased the accuracy in our experiments.

We add four long symmetric skip-connections with a 1×1 con-
volution layer in the middle. The long skip-connections pass fea-
tures at each scale of the encoder directly to the decoder layer at
the same scale, enabling reconstruction of a high-resolution blur
map. Recent CNN structures often adopt element-wise summa-
tion [HZRS16] and concatenation [SLJ∗15] to fuse multiple fea-
tures. In contrast to U-Net [RFB15], we adopt element-wise sum-
mation, instead of concatenation, when forwarding features us-
ing skip-connections. In our network, features in the encoder in-
clude structural information extracted from the finest scale, and
features in the decoder include contextual information dilated from
the coarsest level. With concatenation, the network may merely use
the structural features for reconstructing the final blur map. We use
element-wise summation to forcibly combine both contextual fea-
tures and structural features passed by skip-connections, strength-
ening the influence of contextual features to better deal with homo-
geneous regions.

4.2. Pre-trained model as encoder

Even with our synthetic dataset as well as CUHK datset, the train-
ing set is still not big enough. Directly training a complex network
with a limited dataset inevitably incurs over-fitting. To resolve the
problem, we use a pre-trained model, VGG-19 [SZ14] trained with
ImageNet dataset [RDS∗15] for image classification. Although im-
age classification and blur detection are different, it is known that
various vision tasks such as image recognition and restoration share
low-level features such as edges and small textures. In addition,
high-level features trained for image classification would be helpful
for semantically determining blurriness in homogeneous regions.
Therefore, we fine-tune a well-trained model for our encoder net-
work so that the encoder can learn discriminative features effec-
tively based on the features trained for image classification. This
fine-tuning also enables our decoder network to learn how to prop-
agate well-trained features even only with a limited dataset. The
effectiveness of this approach is shown in Sec. 5.3.
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4.3. Multi-scale reconstruction loss functions

As our network classifies defocus blur, motion blur, and no-blur
at each pixel, we use cross-entropy losses to train our network. For
effective learning of high-level contextual features, we adopt multi-
scale supervision [SVI∗16] that helps stable training of a network
(Fig. 4). We express our network f as:

b̂s = fs(I;θ), (1)

where s is a scale index, b̂s is a blur map with three channels at
scale s, fs is the output of our network f at scale s, I is an input
RGB image, and θ is a set of network parameters. b̂s at the finest
scale has the same spatial resolution as the input image I, and the
three channels of a blur map correspond to different blur types.
Then, training is done by minimizing the loss function defined as:

L(θ;I,b) =−∑
s

∑
p

∑
c

wsbs,p,c log(b̂s,p,c), (2)

where b is the ground truth blur map, and bs is its downsampled
version at scale s. p and c are pixel and channel indices, respec-
tively. bs,p,c and b̂s,p,c are values of bs and b̂s at pixel p and chan-
nel c, respectively. b̂s,p,c is a normalized value across channels us-
ing softmax. ws is a weight for each scale s. We set ws inversely
proportional to the number of pixels at scale s.

The cross-entropy loss at the finest scale helps detailed recon-
struction of a blur map, whereas the one at the coarsest scale helps
coarse approximation. In other words, the loss at the coarsest scale
guides our network to reconstruct an output map using only high-
level features, enabling contextual information propagated over a
wide range. As a result, blur information around edges can be prop-
agated to smooth homogeneous regions far from the edges. The
other losses at finer scales consider mid- and low-level features so
that mid- and high-frequency information can be accurately recon-
structed.

4.4. Implementation details

Data augmentation To prevent the over-fitting problem during
training, we randomly cropped images into 256× 256 patches.
Then, we flipped the image patches horizontally and rotated them
by 90◦, 180◦, and 270◦ for data augmentation.

Training setting We implemented our network with Tensorflow
and used an NVIDIA Titan XP GPU to train the network. We
used Adam optimizer [KB14] for training. The encoder is initial-
ized with pre-trained VGG-19 weights as explained before. The
decoder is initialized by Xavier initialization [GB10]. Our training
process consists of two stages. In the first stage, we use only CUHK
dataset. We used only 800 images from the dataset, keeping other
200 for quantitative evaluation. The learning rate was initially set to
10-4 for the decoder and 10-5 for the encoder, and the network was
trained for 3,000 epochs. Then, the learning rate was set to 10-5 for
the decoder, and 10-6 for the encoder, and another 3,000 epochs
were run. In the second stage, we use our synthetic dataset to fur-
ther improve the blur detection and classification performance. We
set the learning rate to 10-5 for the decoder and 10-6 for the encoder,
and run about 4,000 epochs. We used batch size 10 for all training
stages. We use this model as our final model for our evaluation un-
less otherwise noted.

5. Experimental Results

For all quantitative evaluations, we use 200 images from CUHK
dataset that are not used for training. Among 200 images, 140 im-
ages are defocus blurred, and the other 60 are motion blurred.

We first evaluate the performance of our network as a blur detec-
tor that distinguishes between blurred pixels and non-blurred pixels
for comparison with previous methods. As our network produces
three labels for each pixel, we obtain a binary blur map by merging
motion and defocus blur in the output of our network.

We compare our method with previous blur detection meth-
ods [SXJ14, TWH∗16, GK17, HFF∗18, MFL∗18] in Sec. 5.1, and
defocus map estimation methods [SXJ15,PTCK17] in Sec. 5.2. All
these methods output a map of continuous values either represent-
ing confidence of blurriness or the size of defocus blur. To compare
the performance of blur detection, we convert their results into bi-
nary maps by thresholding them. For fair comparison, we found
the best threshold for each method. Specifically, we tried 255 uni-
formly sampled thresholds to the results of previous methods on
the test set of 200 images. We then chose the best one so that we
can compare our results against their best results. As we use three
metrics for our quantitative evaluation as discussed later, we chose
three thresholds for each method, each of which produces the best
result for the corresponding metric. Resulting binary blur maps, in-
cluding ours, have either 0 or 1 at each pixel representing no-blur
or blur, respectively.

The three metrics used for evaluating our binary blur maps
are accuracy, mean intersection of union (mIoU), and F-measure,
which are defined as:

Accuracy =
1

w×h ∑
p
(1−|Bp−Gp|), (3)

mIoU =
1

Nc
∑
c
(

Bc∩Gc

Bc∪Gc ), and (4)

Fβ-measure =
(1+β)precision× recall

β2 precision+ recall
(5)

where B is an estimated blur map, G is the ground truth map, and
w×h is the image size. c is a blur type and Nc is the number of blur
types, which is two in our case. Precision and recall are defined as:

precision =
∑p BpGp

∑p Bp
, and recall =

∑p BpGp

∑p Gp
. (6)

β is a parameter for F-measure. We use β = 1, which means the
same importance of precision and recall. In addition to these met-
rics, we also compute the variance (σ2) of the accuracy for the en-
tire set of test images to measure the stability of each method.

5.1. Comparison with other blur detection methods

We first compare our method with other state-of-the-art blur de-
tection methods: Shi et al. [SXJ14], Tang et al. [TWH∗16],
Golestaneh and Karam [GK17], Huang et al. [HFF∗18], and Ma
et al. [MFL∗18]. Results of other methods were generated by the
authors’ implementations or downloaded from their project pages.
Huang et al.’s method was also trained using CUHK dataset, and
their test set is the same as ours. There is no publicly available
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Shi Tang Golestaneh Huang Ma Ours
[SXJ14] [TWH∗16] [GK17] [HFF∗18] [MFL∗18]

Max accuracy 0.7423 0.7701 0.8010 0.7949 0.8827 0.9033
σ

2 of accuracy 0.0220 0.0322 0.0227 0.0221 0.0114 0.0139
Max F-measure 0.8055 0.8295 0.8417 0.8485 0.8883 0.9092

Max mIoU 0.5617 0.6040 0.6349 0.6318 0.7578 0.8047

Table 1: Quantitative comparison of blur detection (blur/no-blur) performance with other blur detection methods on CUHK test set.

Figure 5: Precision-recall graphs for the blur detection (blur/no-
blur) performance in Table 1. Note that our method has a fixed
precision-recall value as our network returns 3-way classification
results and we convert them into blur/no-blur maps by merging
the motion and defocus blur without any thresholding. Our method
achieves higher precision and recall than all the other methods.

source code of Ma et al.’s method [MFL∗18], so we implemented
the method and trained it with the same dataset as ours. Table 1
shows a quantitative comparison. As mentioned earlier, we tried
255 different thresholds and used the best one for the results of
the other methods. Nonetheless, our method clearly outperforms
all the others by a large margin in terms of accuracy, F-measure,
and mIoU. Overall precision-recall curves are shown in Fig. 5. Our
method also shows a low variance of the accuracy, implying high
stability in handling various input images.

Fig. 6 shows a qualitative comparison. Most of the other meth-
ods show errors in homogeneous regions as they do not properly
handle such regions. The method of Ma et al. [MFL∗18] shows
high performance quantitatively, but produces blurry and less accu-
rate results near edges as they do not consider low-level features.
On the other hand, our results are visually close to the ground truth
maps, and contain less noise and stains. Edges in our results are ac-
curately aligned to those in the ground truth maps. Moreover, blur
in homogeneous regions is accurately detected as well, as shown in
the fifth and sixth rows in Fig. 6. Interestingly, some of our results
show more accurate edges than ground truth blur maps annotated
by humans, as shown in the second row in Fig. 6.

Shi Park Ours
[SXJ15] [PTCK17]

Max accuracy 0.7934 0.8284 0.9147
σ

2 of accuracy 0.0191 0.0206 0.0090
Max F-measure 0.8393 0.8770 0.9354

Max mIoU 0.6181 0.6785 0.8248

Table 2: Quantitative comparison of defocus blur detection per-
formance with other defocus map estimation methods on CUHK
defocus test set. The results of other methods were converted into
binary blur maps.

baseline multi loss multi loss final
+ VGG

Accuracy 0.8875 0.8955 0.9028 0.9033
F-measure 0.8814 0.8909 0.9091 0.9092

mIoU 0.7677 0.7829 0.8032 0.8047

Table 3: Ablation study for blur detection (blur/no-blur) per-
formance. ‘baseline’ uses single-scale loss and is learned from
scratch. ‘multi loss’ uses multi-scale loss and is learned from
scratch. ‘multi loss + VGG’ uses multi-scale loss and is initialized
by VGG-19. These three models are trained using CUHK dataset.
‘final’ uses multi-scale loss and initialization using VGG-19, and
is also fine-tuned using both CUHK and our synthetic datasets.

5.2. Comparison with other defocus map estimation methods

We also compare our method with the state-of-the-art defocus map
estimation methods [SXJ15,PTCK17], as they can also be used for
blur detection. To compare our method and defocus map estimation
methods, we use the same thresholding strategy. We tried 255 dif-
ferent threshold values and chose the best one for each defocus map
estimation method. Table 2 shows a quantitative comparison. Our
method again clearly outperforms the others in terms of all metrics.

Fig. 7 shows a qualitative comparison. We select various defocus
images including challenging cases for visual comparison. Previ-
ous defocus estimation methods fail in homogeneous regions such
as human faces because human faces have too weak edges. While
the results of Park et al. [PTCK17] in the third and fourth rows
show that the defocus blur amount of the swimmer and kid is rela-
tively lower than that of the background, they are still detected to be
blurry, causing thresholding to fail. On the other hand, our method
successfully detected blur in homogeneous regions with much less
error around strong edges because our method considers large con-
textual information.
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input Shi Tang Golestaneh Huang Ma ours ground truth
[SXJ14] [TWH∗16] [GK17] [HFF∗18] [MFL∗18]

Figure 6: Our blur detection results compared with other blur detection methods. White/black colors in the blur map denotes blur/no-blur
regions, respectively.

5.3. Ablation study

We perform ablation study to see how each component of our
method affects the performance of blur detection. We compare four
different models that are trained using different strategies, but use
the same network architecture. The quantitative results are shown
in Table 3. The first three models are trained using only CUHK
dataset. The first model (baseline) is trained from scratch using a
single-scale loss instead of the multi-scale loss described in Sec.
4.3. The second one (multi loss) is also trained from scratch using
the multi-scale loss. The third one (multi loss + VGG) is trained
from pre-trained VGG-19 using the multi-scale loss. The final one
is our final model, which uses the multi-scale loss, and pre-trained
VGG-19 parameters, and is trained using both CUHK and our syn-
thetic datasets. The results show that each component effectively
increases the performance and the final model exceeds 0.9 in terms
of both accuracy and F-measure.

Another thing worth mentioning in Table 3 is that the perfor-
mance gap between our third and final models does not look sig-
nificant. This is because our synthetic dataset, which is used for
training our final model, is designed for blur type classification of
different types of blur, while the quantitative evaluation in Table
3 simply considers blur detection (blur/no-blur) performance. Re-
garding blur detection, our model trained using only CUHK dataset
(our third model) could already achieve high accuracy as blur de-

only CUHK mixture of
CUHK and ours

Accuracy 0.8404 0.9075
mIoU 0.6576 0.8073

Table 4: Quantitative comparison of blur type classification perfor-
mance between our models trained with and without our synthetic
dataset that consists of complex scenes including both types of blur
together.

tection is simpler than blur type classification. The gain of using
our synthetic dataset will be shown in Sec. 5.4.

Fig. 8 shows a qualitative comparison between our different
models. As shown in Fig. 8, the baseline model has many errors in
homogeneous regions such as the sky and the paper. The result of
the second model that uses the multi-scale loss shows much less er-
ror than the baseline, although it still has quite amount of error. This
implies that the multi-scale loss plays an important role for achiev-
ing high-quality results, as it encourages the network to more ef-
fectively use large contextual information captured by coarse-level
features. Finally, the results of our third (multi loss+VGG) and fi-
nal models have only a very small amount of error. This shows that
well-trained features of pre-trained VGG-19 are very effective to
detect and propagate blurriness.
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input Shi [SXJ15] Shi [SXJ15] Park [PTCK17] Park [PTCK17] ours ground truth
(binarization) (binarization)

Figure 7: Our defocus blur detection results compared with other defocus map estimation methods. The results of other methods are binarized
to compare blur detection performance. White/black colors in the blur map denotes blur/no-blur regions, respectively.

(a) input (b) baseline (c) multi loss (d) multi loss+VGG (e) final (f) ground truth

Figure 8: Qualitative results of ablation study. The notations are same with the ones used in Table 3.

5.4. Blur type classification results

We analyze the effect of our synthetic dataset on blur type clas-
sification for defocus blur, motion blur, and no-blur. We compare
two models: one after the first training stage, and the other after the
second training stage in Sec. 4.4. We make 280 test images using
the same method described in Sec. 3.2. We use 140 defocus blurred
images in CUHK test set and 400 images in the salient object de-
tection dataset [LY15] that are not used for the training dataset.

For quantitative comparison between the two models, we mea-
sured their classification accuracy and mIoU values. Table 4 shows
that the latter model that was trained using our synthetic dataset
achieves much higher accuracy than the former model that was
trained using only CUHK dataset for blur classification.

Figs. 9 and 10 show results of the two models for synthetic and
real images having both defocus and motion blur together. The

model trained using only CUHK dataset cannot separate motion
blur from the defocus-blurred background, as the dataset has no
such images with both types of blur together. In contrast, the model
trained using both datasets accurately detects both types of blur. We
refer the reader to the supplementary material for more results.

6. Applications

Our method can be used for many graphics and vision applications,
some of which are presented in this section.

6.1. Deblurring

For deblurring partially blurred images, non-uniform image deblur-
ring methods [WSZP12, HJSHS11] have been proposed. However,
these methods assume specific blur models with hard constraints

c© 2018 The Author(s)
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Figure 9: Results of blur type classification on synthetic scenes including both defocus and motion blur together. Top row: input images.
Second row: results of the model trained using only CUHK dataset. Third row: results of the model fine-tuned using CUHK and our syn-
thetic datasets. Bottom row: ground truth blur maps. Red/blue/black in the blur maps represent defocus blur/motion blur/no-blur regions,
respectively.

Figure 10: Results of blur type classification on real scenes including both defocus and motion blur together. Top row: input images. Middle
row: results of the model trained using only CUHK dataset. Bottom row: results of the model fine-tuned using both CUHK and our synthetic
datasets. Red/blue/black in the blur maps represent defocus blur/motion blur/no-blur regions, respectively. Input images are from Flickr.

to relieve the severe ill-posedness of the problem. Therefore, it is
not easy to apply the methods to partially blurred images contain-
ing quite different shapes of blur kernels, e.g., an image taken by a
panning shot with focus on a moving object, where the object has
a point blur kernel and the background has a motion blur kernel.
With our accurate blur detection results, these partially blurred im-
ages can be handled by uniform deblurring, which is less complex
and more effective than non-uniform deblurring.

Fig. 11 shows an example. To estimate a blur kernel for the re-

gion specified by our blur map, we modified the kernel estimation
part in an existing uniform deblurring method [PHSY14] to con-
sider only the blurry region while excluding sharp regions. To de-
blur only the region specified by our blur map with the estimated
blur kernel, we also modified the non-blind deconvolution method
of [WSZ14]. Fig. 11d shows a result of non-uniform deblurring us-
ing our method. For comparison, Fig. 11c shows a result of apply-
ing the methods of [PHSY14, WSZ14] to the entire image without
using our blur map.
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(a) input images (b) our blur map

(c) uniform deblur (d) deblur w/ our blur map

Figure 11: Deblurring example. (a) non-uniformly blurred scene.
(c)&(d) deblurred images obtained by a uniform deblurring method
[PHSY14] w/o and w/ our blur map, respectively. The uniform de-
blurring method estimates a wrong blur kernel for the input image
(a), so the deblurred result (c) contains ringing artifacts. In con-
trast, our blur map (b) can guide the uniform deblurring method to
exclude the sharp foreground region in kernel estimation and de-
convolution, resulting in a better result.

6.2. Photo editing with image matting

Extracting a foreground object from the background is one of
the most widely used tools for image editing. Our method can
be used for foreground segmentation when the foreground and
background have different blurriness. Fig. 12 shows an example.
Once extracted, the foreground object can be easily composed into
other images without noticeable artifacts (Fig. 12d) thanks to our
high-quality blur map (Fig. 12b). We can also employ alpha mat-
ting [LLW08] to further improve the quality of a composite image.
We can use our blur map to obtain the initial trimap, from which an
alpha map can be computed (Fig. 12c). A high-quality composition
result can be obtained using the alpha map, as shown in Fig. 12e.

6.3. Blur magnification

Intentional defocus blur is a strong tool for highlighting salient ob-
jects and enhancing aesthetic image quality. However, smartphone
cameras and many consumer cameras are not capable of expressing
large defocus blur because of their physical limitations. Our method
provides a simple and plausible solution to this problem. Using our
method, we can separate out foreground objects that are in-focus.
Then we can blur the background and re-compose the foreground
objects back to the blurred background. Fig. 13 shows an example
of a natural-looking result without any noticeable artifacts.

7. Conclusions

This paper proposed a novel blur detection method using a deep
encoder-decoder framework with long skip-connections. Our net-
work effectively exploits both low-level features for capturing blur
around structural edges and high-level features for propagating blur

(a) source image (b) our blur mask (c) w/ matting

(d) composition using (b) (e) composition using (c)

Figure 12: Image editing example. Our method can be used
for foreground extraction from a blurry background. Image mat-
ting [LLW08] can also be used to refine our blur mask for handling
complicated object boundaries. The source and the background im-
ages are from Flickr.

(a) input image (b) result (c) our blur map

Figure 13: Blur magnification example. Our accurate blur map en-
ables naturally magnifying blur amounts in the background.

information to homogeneous regions. Despite the limited size of
the available dataset, we successfully trained our network using a
pre-trained model and multi-scale reconstruction losses. In addi-
tion, we built a synthetic dataset for classifying defocus and motion
blur and fine-tuned our network to improve the blur classification
performance.

In this paper, we considered detection of different kinds of blur,
but limited ourselves only to detection rather than estimation. We
did not consider a more complicated case either, where an image
region may contain both blur types at the same time, e.g., a moving
object in a defocused region. For such an image region, our net-
work would detect the dominant blur type, as shown in the supple-
mentary material. Future work includes estimation of blur amounts
while handling complex images with more complicated combina-
tions of different types of blur.
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