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Abstract. Mesh chartification is an important tool for processing
meshes in various applications. In this paper, we present a novel fea-
ture sensitive mesh chartification technique that can handle huge meshes
with limited main memory. Our technique adapts the mesh chartification
approach using Lloyd-Max quantization to out-of-core processing. While
the previous approach updates chartification globally at each iteration of
Lloyd-Max quantization, we propose a local update algorithm where only
a part of the chartification is processed at a time. By repeating the local
updates, we can obtain a chartification of a huge mesh that cannot fit into
the main memory. We verify the accuracy of the serialized local updates
by comparing the results with the global update approach. We demon-
strate that our technique can successfully process huge meshes for appli-
cations, such as mesh compression, shape approximation, and remeshing.

1 Introduction

Recently large polygonal meshes acquired by 3D scanning devices have become
widely available. Processing these large meshes may be difficult or even impos-
sible with existing mesh processing tools running on a fixed-size main memory.
To handle large meshes, out-of-core algorithms have been introduced, where the
whole mesh is not loaded into the main memory at the same time.

A simple but effective approach for out-of-core processing is to divide a huge
mesh into several small pieces that can fit into the main memory. Then a mesh
processing tool can be applied to each piece with a small memory footprint.
Out-of-core algorithms based on mesh cutting or clustering have been proposed
for mesh simplification [1, 2, 3] and mesh compression [4, 5].

Mesh partitioning for out-of-core processing can be obtained by dividing a
large polygonal mesh into small pieces using the coordinate axes or voxel grids.
However, in this case, the partitioning result does not reflect mesh features, which
may degrade the performance of the processing. Hence, a feature-sensitive out-
of-core mesh chartification technique will be a useful tool to improve the results
of out-of-core processing.

Mesh chartification has been an active research area and used for numerous
applications, such as texture atlas generation [6, 7], shape simplification [8], and
shape decomposition [9]. Mesh chartification decomposes a mesh into charts,
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where each chart consists of faces with similar properties. Excellent chartifi-
cation techniques have been proposed, most of which try to generate flat and
compact charts with features aligned at the chart boundaries. Unfortunately,
these techniques assume the whole mesh can be accessed for processing at the
same time and are not directly applicable to large meshes that cannot fit into
the main memory.

In this paper, we propose a feature sensitive out-of-core chartification tech-
nique. Our technique adapts previous mesh chartification methods [7, 8] based
on Lloyd-Max quantization to partition large meshes with limited main mem-
ory. The previous methods globally update chartification at each iteration of the
Lloyd-Max quantization. In contrast, our technique locally updates the current
chartification by considering only one chart and its neighborhood at a time. The
chartification of the whole mesh is gradually updated by repeating the local up-
date. We verify with experiments that the results of our technique are as good
as those of the previous global update. As application examples, we show that
the chartification results can be effectively used for mesh compression, shape
approximation, and remeshing.

2 Related Work

2.1 Mesh Chartification

Mesh chartification techniques can be roughly classified into cluster merging and
region growing algorithms. However, all the algorithms assume that the whole
mesh resides in the main memory and cannot be used for out-of-core processing
of large meshes.

A cluster merging algorithm consists of two steps: pair selection and merging
[10, 11]. After evaluating the merging cost of each cluster pair, the algorithm
selects and merges the pair having the minimum cost. After merging, the cost
for the new cluster is updated and the process is repeated.

Lloyd-Maxquantization,which is awell-knownpartitioning algorithm, has been
widely used for data clustering and quantization [12, 13]. Sander et al. [7] intro-
duced the Lloyd-Max quantization algorithm to mesh chartification, and Cohen-
Steiner et al. [8] applied Lloyd-Max quantization for shape approximation.

2.2 Out-of-Core Algorithms

Several out-of-core techniques have been developed for simplification of huge
meshes. Hoppe [1] segments a given mesh into charts and simplifies each chart
independently while preserving the boundary edges. After independent simplifi-
cation of charts, charts are merged and boundaries are simplified. Lindstrom [2]
simplifies large meshes by vertex clustering. This algorithm can simplify large
meshes with small overhead, but the connectivity and topology information are
not utilized and removed. Isenburg et al. [3] proposed a local simplification tech-
nique. At each step, a small part of the mesh is partially loaded and simplified.
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To compress large scanned meshes, Ho et al. [4] introduced an out-of-core
compression technique. The technique partitions an input mesh into several ex-
clusive charts and compresses charts independently with the Touma-Gotsman’s
algorithm [14]. The technique also maintains the gluing information to attach
neighbor charts during decompression. Isenburg et al. [5] proposed an out-of-
core data structure which is composed of small clusters. During compression,
only necessary clusters are loaded into main memory and unnecessary clusters
are released.

3 Out-of-Core Chartification

3.1 Overall Process

In this paper, we propose an out-of-core algorithm for feature sensitive char-
tification of large meshes. Our algorithm is based on Lloyd-Max quantization
for meshes [7], which consists of two steps: region growing and seed recompu-
tation. The region growing step creates a set of charts from given seeds. The
seed recomputation step computes a new seed for each chart. The two steps are
repeated in tandem until the terminal conditions are satisfied. However, for the
region growing, we have to maintain the merging costs of all faces to neighbor
regions. Thus, if an input mesh is too large to fit into the main memory, we can-
not execute chartification with such a global approach. To enable chartification
of large meshes, we propose a local update scheme for Lloyd-Max quantization.
The basic idea is to keep a partial mesh in the main memory for processing
which contains a subset of charts.

The overall process of the proposed out-of-core chartification algorithm is
illustrated in Fig. 1. At the beginning, each chart is stored independently in
a file. At the iterative optimization stage, we read and keep a few charts in
the main memory, which are the selected chart and its neighborhood. We then
update the charts in main memory by region growing similar to the original
Lloyd-Max quantization. After updating the charts, we write and remove them
from the main memory. By repeating this local update with varying selected
charts, we can simulate the global update of chartification with limited main
memory.

To bootstrap such repeating updates, we need an initial chartification. Pre-
vious methods [7, 8] randomly generate initial chartifications. In this paper, to

Fig. 1. Overall chartification process with local updates



Feature Sensitive Out-of-Core Chartification of Large Polygonal Meshes 521

achieve better results, we adopt the previous out-of-core chartification based
on spatial subdivision [4, 5]. In addition, we execute post-processing to remove
annuli charts along with charts that are too small or too big.

During the region growing step, a cost function is used to determine the
conquered order of faces, and the shapes of charts are determined by the cost
function. In this paper, we use cost functions proposed in [7] and [8]. To reflect
mesh features in chartification, the cost functions incorporate the normal vari-
ations among faces. If we want other properties of charts, other cost functions
can be used without changing the framework of the proposed algorithm.

4 Local Update Algorithm

4.1 Local Update

To update a chartification with Lloyd-Max quantization, the seeds are reposi-
tioned to the centroids of the current charts and the charts are recomputed with
new seeds. In our out-of-core chartification method, the seed repositioning and
chart recomputation are locally performed on a chart and its neighborhoods (see
Fig. 2). With a local update, the boundary of the center chart is aligned with
the features and the boundaries of neighbor charts are partially updated. In
this paper, we call the previous algorithms [7, 8] the global update whereas our
method is called the local update.

(a) before (b) after

Fig. 2. Local update of chartification: In (b), tiny black triangles are recomputed seeds

4.2 Update Ratio

In practice, for the global update scheme, a few iterations are sufficient for the
convergence to optimal results [8]. Similarly, we use the number of iterations
as the stopping condition for the local update scheme. However, it is difficult
to count the number of updates in our framework. The boundaries of neighbor
charts are partially updated in a local update and thus keeping track of update
counts is not simple.

To resolve the problem, we define the update ratio of a chart. For a chart C,
the update ratio is initially zero and increased by VC with a local update, where

VC = Npn/Nn.
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Npn is the number of neighbor charts of C which has been involved in the local
update. Nn is the total number of neighbor charts of C. For example, in Fig. 2,
the update ratio of the center chart is increased by one and the update ratios
of the neighbor charts are increased by the amounts less than one. If we want
to obtain a result similar to that by n iterations of the global update, we repeat
the local update until all charts have update ratios larger than n.

4.3 Chart Selection

In the iteration of local updates, the order of charts to be selected as the center
chart influences the final result. A straightforward way is to select a chart whose
update ratio is the minimum. However, such approach does not consider the
effect of a local update on the neighbor charts and may cause over-updating of
a neighbor chart if the chart already has a large update ratio. In this paper,
we define the priority to determine the order of local updates as the average of
update ratios of a chart and its neighbors. This priority considers the overall
update ratio of a partial mesh that will be involved in a local update.

4.4 Local Update with the k-Ring Neighborhood

In Fig. 2, we only consider the center chart and its 1-ring charts for a local
update. However, when the sizes of charts are relatively small, we can store a
larger number of charts in the main memory. That is, we can process a center
chart and its k-ring neighbor charts simultaneously. In this case, the priority
to select the next chart to be processed can be computed as the average of the
update ratios of the center and its k-ring neighbor charts, which constitute the
region to be affected by a local update.

When we update a chart with its k-ring neighbor charts, the chart and its (k−
1)-ring neighbor charts are fully updated and their update ratios are increased
by one. That is, a larger number of charts are fully updated with this approach
than with the local update of 1-ring neighborhood. Consequently, we can reduce
the required number of iterations for local updates, which alleviates the overhead
by file I/O and decreases the processing time.

4.5 Boundary Straightening

Some applications of mesh chartification need smooth and compact chart bound-
aries. To provide such results, we straighten chart boundaries after chartification.
For each boundary shared by two adjacent charts, We find the shortest path from
a corner vertex to the opposite one. To enhance the performance and maintain
the shape features captured in the chartification process, a banded region is des-
ignated along the current boundary and the shortest path is calculated within
the region. The banded region is defined by the k neighborhoods of the current
boundary vertices.

Fig. 3 shows the effect of boundary straightening. Boundaries in Fig. 3(a) are
created by chartification. Fig. 3(b) is the result of straightening, which shows
smoothed boundaries.
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(a) before (b) after

Fig. 3. Chart boundary straightening

4.6 Local Minimum

Usually chartification algorithms based on region growing suffer from local min-
ima. During a chart update, a growing chart region cannot jump through high
curvature features. Suppose several seeds reside in the same region which is sur-
rounded by features in the chartification process. Then, the charts from the seeds
cannot escape the region and we are left with unnecessary charts which could
have merged into one chart. Similarly chartification cannot capture a feature if
no seed is placed in a region surrounded by the feature. To avoid such local min-
ima, Cohen-Steiner et al. [8] insert or delete charts incrementally and introduce
region teleportation, which is similar to vector splitting for scattered data [15].

In this paper, we adapt the solutions in an out-of-core way. In the local update
step, we simulate chart deletion by comparing the local chartification quality
before and after deleting a chart. The quality of a chartification can be measured
by the sum of face distances from the seeds, which will be discussed in Sec. 5.1.
If the distance sum after chart deletion is less than before, we perform the
incremental chart deletion. In that case, we also perform the incremental chart
insertion, constituting a region teleportation. To insert a chart, we place a new
seed on the face with the maximum region conquering cost.

5 Experimental Results and Applications

5.1 Chartification Comparison

Fig. 4 shows the comparison of the chartification results from global and local
update schemes. For the global scheme, we globally update all charts five times
from the initial chartification. For the local scheme, we apply the local update
to all charts one by one and repeat this process five times. Note that in the local
scheme, each chart is updated more than five times because a chart is changed
when the chart itself or its neighbor is selected as the center chart of a local
update. The cost function used for region growing is the one proposed in [7].
In Fig. 4, we can see that the chartification results of the local scheme are as
good as the global scheme even though only local information is used for chart
update.
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(a) global update (b) local update

Fig. 4. Comparison of global and local update schemes

Table 1. Comparison of chartification quality: The quality was measured by the aver-
age of the face cost sums of charts

global update scheme local update scheme
# iterations 1 2 3 4 5 1 2 3 4 5

feline 8.09 5.90 5.47 5.35 5.39 5.48 5.47 5.46 5.32 5.27
skull 73.34 63.91 61.24 59.39 59.06 58.18 57.49 57.35 57.28 57.34

Table 2. Statistics of local updates with different k-ring neighborhoods

# local max # vertices total # processing
model # faces # charts k-ring updates in memory loaded faces time

1-ring 524 44,508 9,058,446 11m 36s
dragon 800,000 300 2-ring 151 139,234 7,262,000 9m 54s
happy 1-ring 976 17,324 11,534,091 14m 3s

Buddha 1,082,760 600 2-ring 277 42,834 9,387,228 12m 27s
xyzrgb 1-ring 949 109,125 76,532,952 2h 12m 13s
dragon 7,218,906 600 2-ring 273 201,488 60,236,558 2h 2m 31s

Table 1 numerically compares the chartification quality between the global and
local update schemes. The chartification quality is measured by the average of
the face cost sums of charts. Once the chartification has been finished, each face
has the cost (distance) from the seed of the chart it belongs to. The sum of the
face costs of all charts is minimized when Lloyd-Max quantization is converged
[16]. Hence, we can consider the average of the face cost sums of charts as the
measure of the convergence for the iterative chart updates. Table 1 shows that
the local updates result in smaller values of the measure, which is natural when
we recall that a chart is updated more often with local updates than with global
updates for the same number of iterations.

In Table 2, we also compare the chartification results of the 1-ring and 2-ring
update strategies. In the experiment, the local update process was continued
until the update ratios of all charts were larger than five. Table 2 shows that the
2-ring update strategy utilizes the main memory more efficiently and as a result,
the file I/O overhead and processing time are decreased. The computation time
was measured on a Windows PC with a Pentium D 3GHz CPU and 1GB memory.
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5.2 Mesh Compression

Our out-of-core chartification technique can be used for effectively compressing
large polygonal meshes. Choe et al. [17] proposed a framework for random ac-
cessible mesh compression, where a necessary mesh part can be decompressed
without decoding other parts. By combining our out-of-core chartification tech-
nique with the framework, we can apply random accessible compression to large
meshes that cannot fit into main memory.

To achieve a good compression ratio in the random accessible mesh com-
pression framework, two properties of charts are important: planarity and com-
pactness. Planar charts enable effective prediction in geometry encoding and
shorter chart boundaries help achieve a better compression ratio. Hence, for the
chartification for random accessible mesh compression, we use the cost function
proposed in [7]. In Fig. 5, the first column shows the chartification results for
the compression framework. In the experiments, local updates were performed
until the update ratios of all charts were larger than five.

Table 3. Statistics of compression examples: The compression ratios were obtained
with the random accessible mesh compression framework [17]

compression ratio (bit/v)
model # vertices # charts with spatial subdivision with our approach

connect. geometry total connect. geometry total
dragon 400,000 271 2.04 16.71 18.75 1.99 16.58 18.57

happy Buddha 541,366 581 2.57 20.99 23.56 2.55 20.73 23.28
xyzrgb dragon 2,933,046 578 0.99 5.86 6.85 0.93 5.71 6.64

lucy 14,027,868 1,184 2.07 16.06 18.13 2.05 15.67 17.72

Table 4. Timing data of mesh compression examples: The chartification was obtained
with the cost function proposed in [7]

initial iterative
model # vertices # charts chartification local update compression

dragon 400,000 271 5m 9s 10m 43s 1m 20s
happy Buddha 541,366 581 6m 50s 13m 12s 1m 40s
xyz rgb dragon 2,933,046 578 1h 55m 2h 30m 7m 45s

lucy 14,027,868 1,184 3h 15m 8h 55m 32m 30s

The compression results for several models are summarized in Table 3. To
show the effect of chartification on the compression framework, we compare the
compression results from the chartification obtained by spatial subdivision and
the chartification obtained by our technique. We can see that the compression
ratio is improved for every example because our chartification is better in terms
of planarity and compactness of charts. Table 4 shows the timing data for mesh
chartification and compression, which were measured on a Windows PC with a
Pentium D 3GHz CPU and 1GB memory.
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Fig. 5. Chartification and shape approximation results: The first column shows the
chartification results for compression, the second column shows the chartification re-
sults for shape approximation, and the third column shows approximation meshes

5.3 Shape Approximation

Cohen-Steiner et al. [8] proposed an excellent shape approximation technique
which obtains an approximation mesh from the original mesh using mesh
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Table 5. Timing data of shape approximation examples: The chartification was ob-
tained with the cost function proposed in [8]

initial iterative approximation
model # vertices # charts chartification local update mesh generation
dragon 400,000 789 5m 9s 10m 50s 2m 5s

happy Buddha 541,366 1,472 6m 50s 15m 30s 2m 54s
xyz rgb dragon 2,933,046 709 1h 55 m 3h 35 m 16m 31s

lucy 14,027,868 1,615 3h 15 m 31h 30 m 1h 56m

chartification. In this technique, the vertices, edges, and faces of an approx-
imation mesh correspond to the corner vertices, chart boundaries, and chart
interiors, respectively. Our out-of-core chartification method can be used to ex-
tend the shape approximation technique to process huge meshes. The resulting
approximation mesh will nicely reflect the features of the original mesh. Note
that the previous out-of-core mesh partitioning based on spatial subdivision [4]
is not proper for this purpose because it does not generate feature-sensitive
chartification.

In [8], to approximate a chart with a plane, the normals of faces in a chart
should be similar to each other. Hence, the cost function used for region growing
in [8] measures the variation of a face normal from the representative normal
of a chart. In Fig. 5, the second column shows the chartification results with
this cost function and the third column shows the shape approximation results.
Table 5 shows the timing data of the shape approximation examples. Again, in
the experiments, the local update process was continued until the update ratios
of all charts were larger than five.

5.4 Remeshing

Our feature sensitive out-of-core chartification technique can be used to pre-
form effective remeshing of very large meshes with limited memory. Once char-
tification has been obtained for a given mesh, we keep the chart boundaries
and just modify the sampling and connectivity of inner vertices of each chart

(a) before (b) after

Fig. 6. Remeshing example



528 S. Choe, M. Ahn, and S. Lee

during the remeshing process. With this approach, we can expect to obtain a
remeshing result that nicely preserves the features of the original mesh because
the chart boundaries are aligned with high-curvature features. For remeshing of
chart interiors, we adopt the explicit surface remeshing technique [18], which can
separately remesh chart interiors while keeping the chart boundaries.

Fig. 6 shows an example. In Fig. 6(b), the mesh generated by the remeshing
has a simple and regular structure. Although we have reduced the size of the
given mesh by a half, the new mesh still contains the original shape features.
In addition, no artifacts are visible around the boundaries between charts even
though each chart has been remeshed independently.

6 Conclusion and Future Work

In this paper, we introduced a feature sensitive out-of-core chartification tech-
nique for large polygonal meshes. To process huge meshes, our out-of-core al-
gorithm keeps only a partial mesh in the main memory at a time and locally
updates chartification. To verify the validity of our approach, we showed that
the results of our local update scheme are as good as the previous global update
scheme.

In the current implementation, after each local update, updated charts are
written to the hard disk and released from the main memory although some of
them can be used for successive chart updates. If we maintain a cache of charts in
the main memory, we will be able to reduce the overhead by unnecessary file I/O.
The design of a cache structure for the charts which improves the performance
of out-of-core chartification is an interesting future work.
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