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Fig. 1. Interactive and automatic navigation of 360◦ video∗. Our system computes an optimal camera path that shows salient areas in a 360◦ video (a), and
plays a NFoV video based on the path in an online manner. Users can interactively change the viewing direction while watching a video, and the system
instantly updates the camera path according to user interaction. The y-axis in (c) is the horizontal angle in a 360◦ video. The solid blue line in (c) illustrates the
camera path computed by our system, and the dotted line indicates the moment when the viewing direction is changed by user interaction. The solid blue line
on the right of the dotted line is the updated path after user interaction. The original video is from the Pano2vid dataset [Su et al. 2016], which is originally from Youtube
(fydc16RTfCo ©my360planet - Johannes Löffelmann). In the rest of the paper, we simply identify the name of the dataset, and the Youtube ID for each video.

A common way to view a 360◦ video on a 2D display is to crop and render
a part of the video as a normal field-of-view (NFoV) video. While users
can enjoy natural-looking NFoV videos using this approach, they need to
constantly make manual adjustment of the viewing direction not to miss
interesting events in the video. In this paper, we propose an interactive
and automatic navigation system for comfortable 360◦ video playback. Our
system finds a virtual camera path that shows the most salient areas through
the video, generates a NFoV video based on the path, and plays it in an
online manner. A user can interactively change the viewing direction while
watching a video, and the system instantly updates the path reflecting the
intention of the user. To enable online processing, we design our system
consisting of an offline pre-processing step, and an online 360◦ video nav-
igation step. The pre-processing step computes optical flow and saliency
scores for an input video. Based on these, the online video navigation step
computes an optimal camera path reflecting user interaction, and plays a
NFoV video in an online manner. For improved user experience, we also
introduce optical flow-based camera path planning, saliency-aware path
update, and adaptive control of the temporal window size. Our experimental
results including user studies show that our system provides more pleasant
experience of watching 360◦ videos than existing approaches.

CCS Concepts: • Computing methodologies → Computational pho-
tography.

Additional Key Words and Phrases: 360◦ video, spherical panorama, user
interaction, 360◦ video navigation

Authors’ addresses: Kyoungkook Kang, DGIST, kkang@dgist.ac.kr; Sunghyun Cho,
DGIST, scho@dgist.ac.kr.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
© 2019 Copyright held by the owner/author(s). Publication rights licensed to ACM.
0730-0301/2019/7-ART108 $15.00
https://doi.org/10.1145/3306346.3323046

ACM Reference Format:
Kyoungkook Kang and Sunghyun Cho. 2019. Interactive and Automatic
Navigation for 360◦ Video Playback. ACM Trans. Graph. 38, 4, Article 108
(July 2019), 11 pages. https://doi.org/10.1145/3306346.3323046

1 INTRODUCTION
360◦ videos that record all directions at once are recently gaining
popularity and getting widely available with the recent advent of
virtual reality applications. Facebook and YouTube now support
360◦ videos so that users can easily watch 360◦ videos on mobile
devices and computers. 360◦ cameras such as Samsung Gear 360, LG
360, and GoPro Fusion 360 have been rapidly emerging, enabling
even casual users to easily create 360◦ videos. Moreover, commer-
cially available virtual reality headsets such as Oculus Rift, Samsung
Gear VR, HTC Vive, and PlayStation VR are getting popular too,
accelerating production of new 360◦ video contents.

Because of the nature of 360◦ videos that record all directions at
once, the most comfortable way for a viewer to watch such a video
would be to wear a head-mounted display (HMD), and turn his/her
head and body around towatch different directions. However, HMDs
are not always available, and it is cumbersome to wear a HMD to
watch a video every time. A more common scenario is to view a 360◦
video on a 2D display such as a computer screen or a smartphone.

One way to view a 360◦ video on a 2D display is to project the
entire video using equirectangular projection so that a viewer can
watch all directions at once. However, equirectangular projection
introduces severe geometrical distortions (Fig. 1(a)). A more popular
way widely used in many applications such as YouTube is to crop
a part of a video, and render it as a normal field-of-view (NFoV)
video. While watching a video, a viewer can manually change the
viewing direction, e.g., by dragging a mouse or by orienting his/her
phone. Unfortunately, it is uncomfortable either because a viewer
needs to constantly adjust the viewing direction as the positions of
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interesting events can constantly change. Moreover, other interest-
ing events may exist in other directions, and it is easy to miss them
unless a viewer carefully checks all directions constantly.
Recently, a few methods [Hu et al. 2017; Lai et al. 2017; Su and

Grauman 2017b; Su et al. 2016] have been introduced to solve this
problem and to allow viewers to more comfortably watch 360◦
videos. Given a 360◦ video, these methods automatically analyze
its contents and find a virtual camera path that navigates the most
interesting areas through the input video. A NFoV video is then
rendered based on the obtained path so that a viewer can view
interesting areas in the input videowithout anymanual intervention.
However, these methods produce a single NFoV video without any
user interaction and users are not allowed to change the viewing
direction when watching a video. Thus, other parts of the original
360◦ video except for the selected path are completely lost.

In this paper, we propose a novel interactive 360◦ video navigation
system. Our system finds a high-quality camera path that shows
salient events in an input 360◦ video, and displays a NFoV video
based on the path. While watching a NFoV video, a user can change
the viewing direction by dragging a mouse as in conventional 360◦
video players whenever he/she wants to. Then, the system instantly
updates the path reflecting the user-specified direction.
To enable user interaction, our system is designed to consist of

two steps: an offline pre-processing step, and an online interactive
360◦ video navigation step. In the pre-processing step, we estimate
optical flow and saliency for a given 360◦ video. In the online navi-
gation step, we split the input 360◦ video into temporal windows.
Then, we find a camera path for one temporal window reflecting
user interaction using one thread while playing a NFoV video of the
previous window using another thread. For smooth user interaction,
we introduce saliency-aware path update and adaptive control of
the temporal window size.
Previous 360◦ video navigation methods [Hu et al. 2017; Su and

Grauman 2017b; Su et al. 2016] often fail to track salient objects as
they do not consider motions in the scene. For high-quality camera
paths, our system finds a camera path reflecting the motions of ob-
jects and the camera using optical flow while maximizing regional
saliency. Thanks to this, our method can effectively show dynami-
cally moving salient objects and their surrounding context. The user
study shows that our system without user interaction generates
more pleasant NFoV videos than previous automatic methods, and
our interactive system greatly improves user experience.

2 RELATED WORK
Automatic navigation of 360◦ video. The most relevant work to

ours include [Hu et al. 2017; Lai et al. 2017; Su and Grauman 2017b;
Su et al. 2016] that automatically generate NFoV videos from a
360◦ video. Su and Grauman [2016] divide the entire 360◦ video
into multiple spatio-temporal segments, and estimate the capture-
worthiness score for each segment using a learned classifier. Then,
they find a smooth path that maximizes the capture-worthiness
score by solving a dynamic programming problem. Finally, a NFoV
video consisting of scenes worth watching is rendered based on the
path. Su et al. [2017b] extended this method to incorporate zooming.
However, they are limited to relatively static scenes and cannot

handle dynamically moving objects or dynamic camera motion. It
is because they use spatio-temporal segments of five seconds for
capture-worthiness estimation, and a hard constraint for enforcing
smoothness of the resulting camera path, restricting the camera
path to move no more than 30 degrees for five seconds.

Hu et al. [2017] detect foreground objects at every frame of a 360◦
video, and use a selector network to find the main object among
them. Then, a regressor network finds a smooth path that follows
the main object. While this method can track dynamically moving
objects more effectively than [Su and Grauman 2017b; Su et al. 2016],
their networks sometimes produce temporally unstable results as
temporal coherence is not explicitly enforced.

Lai et al. [2017] proposed a system to generate a NFoV hyperlapse
video from a 360◦ video. The proposed system utilizes semantic
segmentation labels, saliency, and the focus of expansion to find a
camera path. The system also allows users to customize the result by
choosing preferred semantic labels. However, the system is designed
to generate a hyperlapse video instead of a normal-speed one, and
the camera path is restricted by pre-defined semantic labels.

Besides all the differences between the aforementioned methods
and ours, the most prominent one is that all the previous methods
do not allow user interaction while viewing resulting NFoV videos.
As a result, all the other parts of an original 360◦ video except for
a small set of selected parts are completely lost in their resulting
videos, and users cannot find out what is going on in the other parts.
On the other hand, our system allows users to interactively change
the viewing direction while watching a NFoV video so that they can
navigate the video as they want to.

Interactive navigation of 360◦ video. Another approach closely
related to our work is interactive navigation systems of 360◦ video.
Lin et al. [2017b] recently proposed a visualization system that
shows off-screen regions of interest as picture-in-picture previews.
While watching a NFoV video, a user can select a preview to change
the viewing direction to the selected region of interest. Pavel et
al. [2017] presented a simple interactive system that re-orients a
video to a region of interest when a user presses a button. In these
systems, however, the viewing direction is fixed regardless of the
motions of objects and the camera unless a user changes it manually.
Therefore, a user still needs to constantly adjust the viewing direc-
tion to track an interesting event that changes its position. These
interactive systems and ours are complementary to each other as
they provide additional ways for user interaction. Moreover, as
shown in [Lin et al. 2017a], users prefer different types of assistance
for 360◦ video navigation depending on video contents. Thus, a
combination of these methods and ours can further improve user
experience as will be shown in Sec. 5.

360◦ images and videos. Due to the growing popularity of 360◦
images and videos, many different types of algorithms dedicated
to 360◦ images and videos have recently been proposed. Jung et
al. [2017] and Jeon et al. [2018] proposed image upright adjustment
methods for 360◦ images. Kim et al. [2017] introduced a content-
aware projection method that projects a part of a 360◦ video onto a
2D image plane minimizing distortions. Assens et al. [2017] predict
a scan-path that describes how human visual attention moves on
a 360◦ image. Su and Grauman [2017a] developed a specialized
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Fig. 2. Pipeline of the pre-processing step. The pre-processing step first
computes optical flow from an input 360◦ video, and estimates saliency
based on the optical flow. Finally, it integrates point-wise saliency scores to
obtain regional saliency scores.

convolution operator for training convolutional neural networks on
spherical panoramic images. Later, they also presented an approach
to predict the rotation angle that yields the best compression rate
for a 360◦ video [Su and Grauman 2018].

Video retargeting. Video retargeting has a similar goal to 360◦
video navigation, which is to fit a large 2D video into a smaller
display possibly with a different aspect ratio. One approach to video
retargeting is to detect and crop a salient part from an input 2D
video. Liu et al. [2006] find a cropping window that moves in a
restricted way, e.g., horizontal panning. Deselaers et al. [2008] find
a cropping window from a 2D video that pans, scans, and zooms.
Another approach to video retargeting is to apply content-aware
warping to a 2D video instead of cropping. The most representative
works in this direction include [Rubinstein et al. 2008, 2009; Wang
et al. 2011, 2010; Wolf et al. 2007]. While video retargeting aims at
a similar goal to ours, video retargeting methods do not need user
interaction much because the sizes of original 2D videos and target
displays in video retargeting are usually not much different.

Video stabilization. Video stabilization is a problem to produce
a stable video from a shaky one as if the video was taken using a
gimbal. Video stabilization bears a similarity to 360◦ video naviga-
tion, as it also finds a virtual camera path, and produces a cropped
version of an input video. Video stabilization has been extensively
studied due to its usefulness [Goldstein and Fattal 2012; Grundmann
et al. 2011; Liu et al. 2009, 2011, 2013; Matsushita et al. 2006]. Jiang et
al. [2014] and Liu et al. [2016] proposed online stabilization methods
that produce a stable video at shooting time. Gleicher and Liu [2007;
2008] extended video stabilization and proposed re-cinematography
methods to improve the camerawork of casual videos. For 360◦
videos, Kopf et al. [2016] introduced a method that corrects shaky
rotational camera motion. However, despite extensive literature,
most methods work fully automatically without user interaction.
Bai et al. [2014] use user assistance for correcting motion estimation
for high-quality video stabilization, but their goal to achieve using
user interaction is different from ours.

3 360◦ VIDEO NAVIGATION
In this section, we explain our offline pre-processing step and camera
path planning in the online navigation step. Our online navigation
system with interactive path update will be discussed in Sec. 4.

3.1 Pre-processing
Fig. 2 shows the entire pipeline of the pre-processing step. Our
system takes a spherical panorama video of sizeW ×H as input. For
efficient computation of optical flow and saliency scores, we first

keyframe Timekeyframe

……

Intermediate frames

Fig. 3. Optical flow between consecutive key frames are computed by accu-
mulating optical flow from all frames between them. Arrowed gray lines
in each frame indicate optical flow vectors. The orange line is an obtained
optical flow vector from a key frame to the next.

downsample the input panorama video toW ′×H ′whereW ′ =W /n,
H ′ = H/n, and n is a scaling factor. In our experiments, we set n so
thatW ′ = 360, which is the minimum width we found that optical
flow and saliency can be reasonably estimated from. To compute
accurate saliency scores and optical flow around the cut between
the left and right boundaries of the input panorama video, the left
and right boundaries are padded by 20 pixels in a circular fashion.
We then compute optical flow and video saliency using off-the-

shelf methods for conventional 2D videos. Specifically, we use [Liu
2009] for optical flow. For saliency, we use[Zhou et al. 2014], which
computes video saliency using optical flow as amotion cue. However,
we note that any other methods can be used for computing optical
flow and saliency scores. We also tested FlowNet 2.0 [Ilg et al. 2017],
[Cheng et al. 2018], and capture-worthiness [Su et al. 2016] for
optical flow and video saliency, but found that [Liu 2009] and [Zhou
et al. 2014] produce the best results in our system. The resulting
optical flow and saliency maps have the same spatial size as the
downsampled input video. Saliency scores have values from 0 to 1,
where 0 and 1 mean the least and the most salient, respectively.

For computational efficiency, we find an optimal camera path
using only key frames, which are sampled every four frames, in the
the online video navigation step. Thus, we compute saliency scores
only for those key frames in the pre-processing step. We also com-
pute optical flow between consecutive key frames by accumulating
optical flow maps (Fig. 3). After computing optical flow and saliency
maps, we crop the padded areas at the left and right boundaries.

We also crop the top and bottom of the optical flow and saliency
maps by 10 pixels for computational efficiency and accurate camera
path planning in the later step. Both the top and bottom parts of
spherical panoramas have severe geometrical distortions that may
harm the accuracy of optical flow and saliency. Moreover, as shown
by Sitzmann et al. [2018], they are likely to be less salient due to a
bias of saliency to the equator. Thus, we simply exclude them when
computing a camera path in the later step. We found that this works
well in most cases, but we may sometimes need to consider the top
and bottom parts. In that case, we may compute optical flow and
saliency scores for those parts by projecting an input 360◦ video onto
a cubemap as done in [Kopf 2016]. Fig. 4 shows examples of optical
flow and saliency score maps. After cropping, we downsample both
optical flow and saliency maps so that the resulting width is 180
pixels for efficient computation in the later step.
Finally, we compute the regional saliency scores of all possible

NFoV video frames by integrating point-wise saliency scores. Let
st (p) is the saliency score of the t-th key frame at p where p is a
2D pixel coordinate in the downsampled spherical panorama video.
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(b) Optical flow (c) Saliency score

(a) Original frame

1

0

Fig. 4. An example of optical flow and saliency score maps estimated in
the pre-processing step. Optical flow vectors of different directions are
visualized using different colors. The box on the bottom right in (b) shows
how directions are mapped to colors. Original video from Sports-360 [Hu et al.
2017] (WwujLyXKNoo ©Roger Sanders).

1

0

(a) NFoV regions
on a spherical panorama

(b) Regional saliency
computed from Fig. 4(c)

Fig. 5. NFoV regions are mapped to differently-shaped regions (black) on a
spherical panorama (a). For efficient computation of regional saliency scores
of different NFoV regions, we approximate the irregularly-shaped regions
with rectangles (dotted red).

Then, the regional saliency St (p) is defined as:

St (p) =
1

|R(p)|

∑
p′∈R(p)

st (p
′) (1)

whereR(p) is a region centered atp that corresponds to a NFoV video
frame. The shape and size of R(p) is determined by the y-component
of p and the field of view. In our system, we assume that the field
of view is fixed. |R(p)| is the number of pixels in R(p). Due to the
nonlinear mapping from a spherical panorama to a NFoV video
frame, R(p) has different shapes at different p as shown in Fig. 5(a).
To efficiently compute St (p), we adopt an approximation approach
similar to [Su and Grauman 2017a] that approximates irregular
regions on a spherical panorama with rectangles since St (p) over a
rectangular R(p) can be efficiently computed using a summed-area
table. Fig. 5(b) shows a regional saliency map corresponding to Fig.
4(c). We refer the readers to our supplementary material for more
details about the approximation approach.

3.2 Camera Path Planning
In the online 360◦ video navigation step, we find an optimal camera
path that passes through salient parts of the input 360◦ video and
is smooth enough for a user to comfortably watch. Camera path
planning consists of three steps: initial path planning, FoV-aware
path planning, and path smoothing. The initial path planning step
first computes a camera path that tracks the most salient object. The
FoV-aware path planning step finds a path that is close to the initial
path, but more effectively shows the surrounding context as well as
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Fig. 6. Different camera paths computed by different methods. (a) Camera
path computed by maximizing only saliency. (b)-(d) Camera paths obtained
using the conventional smoothness term ((b) ωo = 0.01, (c) ωo = 0.05, (d)
ωo = 0.1). A large ωo for the conventional smoothness term makes the
path stay at the same position not following salient objects, and a small ωo
makes the path jump between salient areas. On the other hand, our optical
flow-based smoothness term encourages the path to follow salient objects
more effectively and stably.

the most salient object. Finally, the path smoothing step computes
a smooth camera path considering the velocity and acceleration of
the virtual camera. As all the steps are performed during online
video navigation, each step is designed to be lightweight.

3.2.1 Initial path planning. Given a set of key frames Fkey =

{ f
key
1 , ... , f

key
T }, its corresponding saliency maps {s1, ..., sT }, and

optical flowmaps {o1, ...,oT }, we find an initial path P = {p1, ...,pT }
where pt is a 2D pixel coordinate in the downsampled spherical
panorama video at the t-th key frame. We find P by minimizing the
following energy function:

E(P) =
T∑
t=1

|1 − st (pt )| + ωo

T−1∑
t=1

∥v(pt+1,pt ) − ot (pt )∥ (2)

where ot (pt ) is the 2D optical flow vector at pt from the t-th key
frame to the (t+1)-th key frame.v(pt+1,pt ) is a 2D vector frompt to
pt+1 defined in a horizontally circular fashion, i.e., its x-component
vx (pt+1,pt ) is defined as:

vx (pt+1,pt ) = p
x
t+1 − pxt + aW

′ (3)
wherepxt andpxt+1 are the x-components ofpt andpt+1, respectively,
and a is either -1, 0, or +1 that gives the smallest |vx (pt+1,pt )|. ωo
is a weight to balance the two terms. We set ωo = 0.1 by default
in our implementation. ∥ · ∥ is an L1 norm. The first term in the
energy function is a saliency term that makes the path pass through
the most salient parts of key frames, while the second term is a
smoothness term that makes the path follow optical flow.
The smoothness term in Eq. (2) is a simple modification to a

conventional smoothness term that encourages temporal change to
be close to zero, which can be defined as:

ωo

T−1∑
t=1

∥v(pt+1,pt )∥ (4)

in our case. While our modification in Eq. (2) looks simple, it has a
couple of noticeable advantages. First, it enables to track moving
objectsmore effectively as optical flow reflects themotions of objects.
Second, it helps avoid the path jumping back and forth between
multiple salient objects. When multiple salient objects are present,
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(a) Without FoV-aware path planning (b) With FoV-aware path planning

Fig. 7. FoV-aware path planning. While (a) shows the most salient object
(the head of a woman) at the center, (b) looks more natural with other
salient objects (a man on the left, and the body of the woman). Original video
from Pano2vid (3d2PCTiNBAs ©Boonsri Dickinson Srinivasan).

maximizing saliency, or equivalently minimizing the first term in Eq.
(2), may cause the camera path to jump between the salient objects.
On the other hand, minimizing Eq. (4) may prevent the camera path
from jumping between salient objects, but it also hinders the path
from following fast-moving objects. Temporal smoothness based
on optical flow can effectively solve this problem as it makes the
path follow the optical flow of an object. Fig. 6 shows the effect of
temporal smoothness based on optical flow.
We find an optimal solution of Eq. (2) using dynamic program-

ming. Specifically, the energy Et (pt ) of an optimal path from the first
key frame to the t-th key frame that ends at pt can be recursively
computed as:

Et (pt ) = |1 − st (pt )| + Et−1(p
′
t−1)

+ ωo ∥v(pt ,p
′
t−1) − ot−1(p

′
t−1)∥ (5)

where

p′t−1 = argmin
p′∈N(pt )

{
Et−1(p

′) + ωo ∥v(pt ,p
′) − ot−1(p

′)∥
}
. (6)

N(pt ) is a spatial neighborhood of pt defined in a horizontally cir-
cular fashion. In our system, we set the size of spatial neighborhood
to 31 × 31, which is large enough to track fast-moving objects on
downsampled key frames. To solve dynamic programming, we com-
pute Et (pt ) for all pt ’s as we sequentially increase t from 1 to T . At
the end of the process, the minimum ET (pT ) is the energy of an
optimal path from the first key frame to the T -th key frame. The
optimal path corresponding to the minimum ET (pT ) can be found
by backtracking from the T -th key frame.

3.2.2 FoV-aware path planning. The initial path simply tracks the
most salient events through the video. Thus, if we render a NFoV
video based on the path, the video will always show the most salient
object at its center regardless of its surrounding context. Unfortu-
nately, as Fig. 7 shows, this may fail to yield an ideal result, especially
when there is a large salient object, or are multiple salient objects
close to each other. In such cases, a more ideal camera path would
be one that shows not only the most salient object but also other
ones.
To this end, we find a FoV-aware path P̃ that is close to P but

reflects the field of view of a NFoV video. To obtain P̃ , we minimize
the following energy function for each key frame:

Ẽ(p̃t ) = |1 − St (p̃t )| + ωp ∥p̃t − pt ∥ (7)

where p̃t ∈ P̃ is the FoV-aware path at the t-th key frame. The first
term on the right hand side promotes the FoV-aware path to cover
more salient regions using regional saliency St (p̃t ) and the second

term encourages p̃t to be close to pt . ωp is a weight for the second
term, which is set ωp = 0.0001 in our implementation. We do not
include any terms to encourage temporal coherence in Eq. (7) as
we have a separate path smoothing step, which will be discussed
later. As Eq. (7) is defined independently to other frames, it can be
minimized efficiently using exhaustive search. For computational
efficiency, we also restrict p̃t to be within a 21 × 21-sized spatial
neighborhood centered at pt .
While we may directly find a FoV-aware path P̃ instead of P by

replacing st (pt ) by St (pt ) in Eq. (2), we separately compute P and P̃
because they serve for different goals. A salient region in a video
usually corresponds to an object, and P is computed to track the
most salient object by maximizing the saliency at points. Then, P̃
is computed to show contextual information surrounding the main
object by maximizing the regional saliency. In addition, we observed
that direct computation of P̃ results in less satisfactory results be-
cause detecting and tracking a main object becomes ambiguous as
St (pt ) is a saliency score over a region, and the optical flow ot (pt )
at pt no longer reflects the motion of the main object.

3.2.3 Path smoothing. Finally, in the path smoothing step, we com-
pute a temporally smooth path P̂ = {p̂1, ...p̂T } from the FoV-aware
path P̃ by minimizing the following energy function:

Ê(P̂) =

T∑
t=1

∥p̂t − p̃t ∥
2 + ωv

T−1∑
t=1

∥p̂t+1 − p̂t ∥
2

+ ωa

T−1∑
t=2

∥p̂t+1 − 2p̂t + p̂t−1∥2 (8)

where the first term on the right-hand side is a data term, and the
second and third terms are smoothness terms based on velocity and
acceleration, respectively.ωv andωa are weights for the smoothness
terms. We use ωv = 200 and ωa = 2.0 × 104 in our implementation.
The velocity-based smoothness term encourages the virtual camera
to stay still, while the acceleration-based smoothness term encour-
ages the camera to move at a constant speed like a panning or a
dolly shot as discussed in [Grundmann et al. 2011].
We may formulate a single energy function that unifies Eqs. (7)

and (8) for a more optimal solution. However, the unified energy
function leads to a discrete optimization problem involving saliency
scores. We may solve the problem by dynamic programming but
still need a huge search space and computation time due to the
second order derivative-based temporal coherence term, which is
not suitable for online processing.

In our system, before path smoothing, we upscale the FoV-aware
path P̃ by multiplying 2n and linearly interpolate it for all interme-
diate frames first. Then, we perform the path smoothing step to
obtain a smooth and properly-scaled path defined on all frames.

4 ONLINE 360◦ VIDEO NAVIGATION WITH
INTERACTIVE PATH UPDATE

4.1 Online Video Navigation
To make our system run in an online manner, we split an input 360◦
video into disjoint temporal windows ofN frames, which correspond
to N /4 key frames. We denote the i-th temporal window byWi . Our
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(a) Online processing based on temporal windows

(b) Projection to a NFoV image

Fig. 8. Online processing. (a) Our system uses two threads: path finder
and video player. The video player plays a NFoV video for the current
temporal windowWi , while the path finder computes an optimal path for
the next temporal windowWi+1. (b) Each spherical panorama video frame
is projected as a NFoV image using the camera path as the projection center.
The curved red box in the left image indicates the region that is projected
as a NFoV frame. Original video from Pano2vid (pV_8ETmQ89w ©OurWorld360).

online step is implemented using two threads: path finder and video
player. The path finder thread computes an optimal path forWi
while the video player thread plays a NFoV video ofWi−1. After
playing a NFoV video ofWi−1, both threads proceed to the next
windows (Fig. 8(a)). In our implementation, each temporal window
has N = 400 frames, which correspond to 100 key frames.
The path finder thread finds a camera path forWi based on the

process described in Sec. 3.2. For temporal coherence between con-
secutive frames, both initial and smoothed paths should be coherent
as they serve for different goals. To this end, we first modify the
initial path planning as follows. We build a set of key frames Fkeyi
ofWi , and also include the last key frame ofWi−1 as the first key
frame in F

key
i . Then, we find an initial path forWi by optimizing

Eq. (2) with an additional constraint pi ,1 = p(i−1),T where pi ,1 is the
first camera position of the initial camera path ofWi and p(i−1),T is
the last camera position of the initial camera path ofWi−1. This hard
constraint can be easily implemented in dynamic programming by
setting E1(p,T ) in Eqs. (5) and (6) as follows:

E1(p,T ) =

{
0 for p = p(i−1),T
∞ for other p′s . (9)

For coherent path smoothing, we introduce an additional hard con-
straint p̂i ,1 = p̂(i−1),T to Eq. (8). Optimizing Eq. (8) with this equality
constraint is a simple quadratic programming problem, which can
be easily solved using Lagrange multiplier method [Wright and
Nocedal 2006].

The video player thread renders NFoV video frames based on the
computed camera path. Each frame in the input spherical panorama
video is projected as a NFoV video frame using equirectangular
projection. The camera path at the current frame is used as the
projection center (Fig. 8(b)).

4.2 Interactive Path Update
For interactive path update, we designed a simple graphical user
interface (GUI) as shown in Fig. 9, which looks similar to conven-
tional video player apps. A user can watch a NFoV video generated
from an input 360◦ video using our GUI. To change the viewing

Fig. 9. Graphical user interface showing a NFoV video with a progress bar
on the bottom. A user can drag a mouse on the NFoV video to change the
viewing direction.

direction, a user can simply drag a mouse on the video player win-
dow. Then, our system updates the camera path reflecting the user
input. Specifically, the system re-defines temporal windows from
the current frame. Then, for each temporal window, a new camera
path is computed according to the viewing direction specified by
the user in an online manner.

To provide responsive path update with no latency, we adaptively
change the size of temporal windows. Using a long temporal window
can produce a more optimal path for a long period of time, but
requires a long computation time for the camera path planning. On
the contrary, a short temporal window can reduce the computation
time, but may result in a less optimal path that does not follow
salient objects. Fortunately, as will be discussed later, our system is
designed to track the user-specified point instead of salient areas for
a moment after a user changes the viewing direction, then gradually
go back to track salient areas. Thus, even a very short temporal
window does not degrade the quality of the path much. Therefore,
we use short temporal windows when a user changes the viewing
direction, and gradually increase the temporal window size.
Specifically, we set the frames from the current frame to the

nearest key frame after τ seconds as the first temporal window. τ
is used to give a short delay before resuming automatic navigation.
We found that users often change the viewing direction by dragging
the mouse several times in succession rather than once, and they
feel uncomfortable if the viewing direction changes between mouse
dragging in a preliminary experiment. To prevent the change of
the viewing direction between successive mouse dragging, we set
τ = 0.5, which leads to the first temporal window of 15 to 18 frames.

For the first temporal window, we simply let the camera track the
optical flow at the current position regardless of saliency. Thus the
video player thread simply plays the first temporal window, and the
path finder thread computes a camera path for the next temporal
window. We set the size of the second temporal window to five
key frames and double the size for each temporal window until it
reaches at 100. Fig. 10 illustrates our interactive path update.

A camera path reflecting the user intention is obtained as follows.
Let us first denote the pixel coordinate of the center point in the
user-specified viewing direction by q. We assume that q is the point
where the user is interested to watch. For interactive path update,
we consider the following criteria:

(1) If q is in a region with high saliency, the updated path should
follow the most salient object near the point.
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Fig. 10. Illustration of how interactive path update works. The path finder
thread finds an optimal path for the next temporal window while the video
player thread plays a NFoV video for the current temporal window. A small
temporal window is used right after user interaction occurs to reduce the
latency, and the window size gradually increases.

(2) Even if q is in a region with low saliency, we assume that the
user still wants to see that direction. Thus, the user-specified
direction should be shown for a certain amount of time.

To satisfy these criteria, we modify Eq. (2) as:

E(P) =

t0+T∑
t=t0

(1 − ωt )|1 − st (pt )| +

t0+T∑
t=t0

ωt ∥pt − qt ∥

+ ωo

t0+T−1∑
t=t0

∥v(pt+1,pt ) − ot (pt )∥ (10)

where t0 is the index of the first key frame in the current temporal
window, and qt in the second term on the right hand side is the
pixel coordinate corresponding to q on the t-th key frame, which is
computed by accumulating optical flow. For the second temporal
window where we resume automatic navigation, we use an addi-
tional hard constraint pt0 = qt0 .
ωt is a weight that is initially 1 and decays to 0 as time goes.

Specifically, we define ωt as follows:

ωt = exp
(
−
|t − u |2

2σ 2

)
(11)

where u is the index of the key frame where we resume automatic
navigation, and σ is a parameter that controls the decaying speed,
which is determined according to saliency. If the user-specified point
has high saliency, we set σ to be small so that ωt quickly decays to
0 and the path follows a salient object satisfying the criterion (1).
On the other hand, if the user-specified point has low saliency, we
set σ to be large so that the path stays at the user-specified point for
a longer period of time satisfying the criterion (2). We define σ as:

σ = max {α (1 − su (q)) , ϵ} (12)

where α is a parameter to control the decaying speed of ωt . We set
α = 10 in our experiments. ϵ is a small constant to prevent division
by zero in Eq. (11). We use ϵ = 1e − 4 in our implementation.

5 RESULTS AND COMPARISONS
We implemented the pre-processing and online video navigation
steps usingMatlab and C++, respectively.We used the executables of
the authors for optical flow [Liu 2009] and saliency estimation [Zhou
et al. 2014], both of which are also implemented using Matlab and

Table 1. Computation time for each step. 100 key frames correspond to 13
seconds of a video of 30 frames per second.

Step Time
Pre-processing of a 1 min. video
Total 177 min.

Optical flow 10 min.
Saliency 166 min.

Regional saliency 0.37 sec.
Online 360◦ video navigation (100 key frames)

Initial path 3.58 sec.
NFoV-aware path 2.14 sec.
Path smoothing 0.04 sec.

(a) Result using the conventional smoothness term

(b) Our result

Fig. 11. Example of multiple salient objects. Video frames are shown from
left to right in the temporal order. The input video has multiple soccer play-
ers running on the field. While the result obtained using the conventional
smoothness term fails to track the player in a red jersey, our result success-
fully tracks the player. Original video from Pano2vid (lvH89OkkKQ8 ©LOSC).

C++, and available on their websites1. We used the default parame-
ter values presented in Secs. 3 and 4 for all the experiments as we
empirically found that they performed well in most cases. Table 1
shows computation times for each step of our method, which are
measured on a PCwith an Intel Core-i7 3.7GHz CPU and 32GB RAM.
The pre-processing step requires a long computation time mostly
due to optical flow and saliency estimation. On the contrary, optimal
path computation is fast enough to enable online path finding. The
camera path planning takes 5.8 seconds for 100 key frames that cor-
respond to about 13 seconds of a video of 30 frames per second. The
camera path planning takes 0.3 seconds for 5 key frames enabling
instant update of the camera path after user interaction. We note
that our implementation is not optimized, and computation time
can be further reduced by code optimization and adopting more
efficient optical flow and saliency estimation methods.

We tested our system using various videos including datasets of
[Su et al. 2016], [Hu et al. 2017], and Youtube videos. We refer the
readers to our supplementary material for all the resulting videos
and comparisons shown in this section as well as additional exam-
ples and user study results. Fig. 11 shows our result on a 360◦ video
with multiple fast-moving salient objects: soccer players running
on the field. Both results are obtained without any user interaction.
The first row shows our result using the smoothness term based on
optical flow. The second row shows a result using the conventional
smoothness term (Eq. (4)). To show the effect of the smoothness
term more clearly, we did not use FoV-aware path planning in this
1https://people.csail.mit.edu/celiu/OpticalFlow/, https://github.com/zhfe99/sal
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(a) NFoV video obtained using 𝜔 = 0.02

(b) NFoV video obtained using 𝜔 = 0.1

Fig. 12. Effect of different ωo ’s. Large ωo results in a stable path, while
small ωo makes the path able to jump between different events promptly.
Original video from Pano2vid (70vmG1G7q0I ©Gotcha VR).

(a) Deep 360 Pilot [Hu et al. 2017]

(b) Our result

Fig. 13. Comparison with Deep 360 Pilot [Hu et al. 2017]. Video frames
are shown from left to right in the temporal order. Hu et al.’s result shows
abrupt jumping between two people, while our result does not.

example. Both videos initially track the player in a red jersey on
the left. Our result keeps tracking the player until the end of the
scene successfully thanks to the smoothness term reflecting optical
flow, but the result with the conventional smoothness term fails to
track the player and moves to another area. Fig. 12 shows the effect
of ωo that controls the balance between the saliency and temporal
smoothness terms in Eq. (2). As shown in the figure, smallωo allows
the path to jump between different events more promptly, while
large ωo makes the path more stable.
We compare our system with previous automatic methods of

Su et al. [2016] and Hu et al. [2017], which we refer to as AutoCam
and Deep 360 Pilot, respectively, in the rest of this section. Fig. 13
shows a comparison between Deep 360 Pilot [Hu et al. 2017] and
ours. Our result is obtained without any user interaction. Deep 360
Pilot finds a main object to follow using recurrent neural networks
(RNNs). Even though the trained RNNs utilize multiple frames, they
do not consider the motions of objects when choosing the main
object. As a result, the result of Deep 360 Pilot shows one person,
jumps to another, and then jumps back to the original person in
a short period of time. On the contrary, our result shows a more
stable camera path without jumping between different people, as
we explicitly consider the motions of objects using optical flow.

(a) AutoCam [Su et al. 2016]

(b) Our result

Fig. 14. Comparison with AutoCam [Su et al. 2016]. Video frames are shown
from left to right in the temporal order. The result of AutoCam fails to track
a bike moving dynamically, and keeps showing the same direction, while
our result tracks the bike more responsively. Original video from Sports-360
(PZwWP_oqB68 ©WOOZY BMX VIDEOS).

Fig. 14 shows a comparison between AutoCam [Su et al. 2016]
and ours. The result of AutoCam was produced by Hu et al. [2017]’s
implementation of AutoCam. AutoCam restricts the camera path to
move less than 30 degrees for five seconds, as computing capture-
worthiness scores requires a relatively long video sequence. As a
result, its result fails to track a bike quickly crossing the scene, and
keeps showing the same direction. In contrast, our result tracks the
bike more responsively thanks to our effective path planning.

Finally, Fig. 15 shows an example of interactive path update. The
green curve shows the camera path computed by our system with-
out user interaction. The path follows a kid in the video as the kid
is the most salient object. The black arrowed line indicates the mo-
ment when the viewing direction changes towards a man climbing
a wall by user interaction. The solid blue and dotted red curves
show updated camera paths by user interaction. Each curve is com-
puted using different values for α that controls how long the path
is affected by user interaction. For the blue curve, we use α = 30
to make the path to stay at the position specified by the user for a
longer period of time. For the red curve, we use α = 5 to enable the
path to more quickly move to more salient objects. At the beginning,
both the blue and red curves track the kid exactly same as the green
curve. After the user changes the viewing direction towards the
man climbing the wall, the blue curve starts to track the man instead
of the kid. The red curve also tracks the man for a while, then it
goes back to the kid as the kid is more salient than the man.

5.1 User Study
5.1.1 Comparison with fully automatic methods. We conducted user
studies to evaluate the performance of our system. To evaluate
our system as a fully automatic 360◦ video navigation system, we
compare ours with previous fully automatic methods: AutoCam [Su
and Grauman 2017b; Su et al. 2016], Deep 360 Pilot [Hu et al. 2017],
and 360 Hyperlapse [Lai et al. 2017].

For comparison with AutoCam [Su and Grauman 2017b; Su et al.
2016] and Deep 360 Pilot [Hu et al. 2017], we tried to use all possible
videos provided by the previous works except for the videos whose
input videos are no longer available on Youtube. To compare with
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(c) Which video do you prefer?

Fig. 16. User study result on comparison with other automatic methods.

AutoCam [Su and Grauman 2017b; Su et al. 2016], we used seven
360◦ videos, three of which are from the Sports-360 dataset of [Hu
et al. 2017], and the other four are from [Su and Grauman 2017b].
Note that [Su and Grauman 2017b] is an extension of [Su et al. 2016]
with zooming, so their results have similar tendencies. Thus, we
group them together in our user study. For the results of AutoCam
on the Sports-360 dataset, we used the results presented on the
project website2 of [Hu et al. 2017], which were generated using
Hu et al.’s implementation of [Su et al. 2016]. For the other results of
AutoCam, we used the results presented on the project website3 of
[Su and Grauman 2017b]. To compare with Deep 360 Pilot [Hu et al.
2017], we used nine 360◦ videos from [Su et al. 2016] and [Hu et al.
2017]. For the results of Deep 360 Pilot, we used the authors’ results
presented on their project website. As we use the videos downloaded
from the project websites, some videos are of low resolution with
compression artifacts. For fair comparison, we degraded our results
as well by downsampling and upsampling.
To compare with 360 Hyperlapse [Lai et al. 2017], we modified

our system to produce a hyperlapse video. Specifically, we first
apply 360◦ video stabilization as done in [Lai et al. 2017], and then
regularly sample input video frames to shorten the running time of
the video. To estimate the optical flow between the sampled frames,
we first estimate the optical flow between the consecutive input
frames, then accumulate them as described in Sec. 3.1. Then, we
perform the remaining process as described in Sec. 3. We used four
2https://aliensunmin.github.io/project/360video/
3https://www.cs.utexas.edu/~ycsu/projects/watchable360/

representative videos (quickly moving forward, gliding, multiple
salient objects, static camera motion) out of 10 video from [Su et al.
2016], which are used in Hyperlapse [Lai et al. 2017]. For the results
of 360 Hyperlapse, we used the results of the authors presented in
their project website4.
For the user study, we recruited 20 participants. All the partici-

pants are graduate students majoring in either electrical engineering
or computer science, but not related to computer graphics. Each
participant was shown 20 pairs of videos. We first showed the input
360◦ video for each pair. Then, we showed the pair side-by-side. We
randomly changed the order (left/right) for every pair, and did not
inform the participants which methods were used to generate the
videos. For each pair, we asked three questions to the participants:
(a) which video shows important events better? (b) which video is
more comfortable to watch? and (c) which video do you prefer?
Fig. 16 summarizes our user study result. More detailed analy-

sis on the user study can be found in the supplementary material.
Against AutoCam [Su and Grauman 2017b; Su et al. 2016] and Deep
360 Pilot [Hu et al. 2017], our method is preferred in all three ques-
tions by large margins, showing that our method is able to show
important events in a more effective and comfortable way. In the
comparison with AutoCam, most participants commented that our
results show more information than AutoCam. There was also a
negative feedback from one participant saying that it felt dizzy be-
cause the camera moved too quickly. In the comparison with Deep
360 Pilot, most participants commented that our results are less
shaky and more comfortable to watch.
Interestingly, our hyperlapse videos are comparably favored by

the participants against the results of 360 Hyperlapse [Lai et al.
2017], even though our system is not designed for hyperlapse videos.
On the contrary, 360 Hyperlapse utilizes focus of expansion and
semantic-aware frame selection for high-quality hyperlapse videos.
As 360 Hyperlapse produces results with smooth camera motions
as ours, most of the comments from the participants were about
the contents in the videos rather than the camera motion, and the
participants generally preferred videos with more contents.

5.1.2 Comparison with interactive methods. To evaluate our interac-
tive system, we compare our system with three interactive methods:
Baseline, PIP [Lin et al. 2017b], and Shot Orientation [Pavel et al.
2017]. Baseline is a conventional interactive method used in many
360◦ video applications such as Youtube, which allows users to
change the viewing direction by dragging a mouse, but does not
4http://vllab.ucmerced.edu/wlai24/360hyperlapse/
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Fig. 17. User study result on comparison with other interactive systems.
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Fig. 18. User study result on combinations of other interactive systems and
ours.

provide any other assistance. PIP shows picture-in-picture previews
of off-screen regions of interest. The system also provides users a
visual cue of the distance and direction of a region of interest using
the position and tilting of its preview. A user can change the viewing
direction directly to an important event by clicking a preview. Shot
Orientation provides a simple user assistance such that a user can
simply press a button to change the viewing direction to a region
of interest that is either pre-defined or detected. For evaluation, we
implemented PIP and Shot Orientation, as their code is not available.
We prepared six 360◦ videos and recruited 18 participants. We

grouped the participants into two groups of nine people. Both groups
were asked to use Baseline, PIP and ours, and Baseline, Shot Orien-
tation and ours, respectively in random order, for three randomly
chosen videos. Then, the participants were asked three questions: (a)
which method is easier to locate important events with? (b) which
one is more convenient to navigate the video with? and (c) which
one do you prefer to use? For each question, the participants was
asked to rank the three systems in an order. We then counted how
many times one method was preferred over another.
Fig. 17 summarizes the user study result. Against Baseline, our

system was preferred by the participants by large margins in all
three questions, proving that our system clearly improves the user
experience over Baseline. Against PIP [Lin et al. 2017b], our system
was preferred in all three questions too, even though PIP directly
shows previews of important events. A possible reason is that the
size of previews can be sometimes too small to recognize for complex
scenes. On the other hand, Shot Orientation [Pavel et al. 2017] was
preferred by the participants in question (a), as users can quickly
switch the viewing direction between different salient events by
pressing a button. However, in the other questions regarding the
convenience of navigation and overall preference, our system was
still preferred by the participants.

We investigate the potential synergy of combinations of previous
interactive systems and ours. We implemented two combinations:

(a)

(b)
Fig. 19. Failure cases. (a) Our systemmay fail to track one object when there
are multiple salient objects close to each other. (b) It may also change the
viewing direction to a salient object against the intention of a user. Original
video of (a) from Sports-360 (_evOm6vbgtU ©Lorenz Pritz).

PIP + ours, and Shot Orientation + ours. We asked the first group of
the participants to use PIP + ours, and the second group to use Shot
Orientation + ours. For each combination, the participants were
asked whether they preferred the combination over either a previ-
ous interactive system or ours. Fig. 18 shows the user study result.
In the case of Shot Orientation, the participants clearly preferred
the combined system, proving that Shot Orientation and ours have
a clear synergy. On the other hand, in the case of PIP, the prefer-
ence was unclear. Some participants commented that the positions
of previews changed too quickly in the combined system. This is
because the distances and directions of regions of interest from the
current viewing direction are constantly changed by our method in
the combined system.

5.2 Limitations
Our system has a few limitations. As it depends on saliency and
optical flow, it may fail when either one of them fails, e.g., salience
estimation may fail to detect interesting events, and optical flow
may fail to estimate motions of fast-moving small objects, and get
confused when multiple objects occlude each other. In Fig. 19(a),
multiple salient people run around and cross each other. As a result,
our system frequently changes the viewing direction from one per-
son to another. To resolve this, we may employ more sophisticated
saliency estimation and object tracking methods.

Our system shows a certain direction for a certain amount of time
even if there are no salient objects at the direction, then changes the
viewing direction to a salient object. This behavior may sometimes
not match the intention of a user. For example, in Fig. 19(b), our sys-
tem originally shows a kid, and a user changes the viewing direction
to a climber on the wall who is less salient. The system shows him
for a while, and automatically changes back the viewing direction
to the kid, which can be against the user’s intention. To resolve this
issue, we may interactively change the user interaction parameter α
or introduce an additional lock-on mode. Video examples of failure
cases can be found in the supplementary material.
Our system cannot handle interesting events happening on the

top or bottom parts of a video, as we exclude those parts when com-
puting an optimal path. We are also planning to adopt cubemaps to
resolve this as done in [Kopf 2016]. Our system sometimes shows the
torso instead of a person’s face. This issue may be resolved by using
an improved saliency estimator or a face detector. Incorporating
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zooming as done in [Su and Grauman 2017b] is another interesting
future work.

6 CONCLUSION
Although 360◦ videos are getting popular and widely available,
viewing a 360◦ video on a 2D display is still not as comfortable
as conventional 2D videos as viewers need to constantly adjust
the viewing direction. In this paper, we proposed a practical and
interactive system for viewing 360◦ video on a 2D display. Our
system estimates optical flow and saliency in the pre-processing
step. Based on them, the system automatically finds a camera path
for the best viewing experience. While watching a video, a user can
change the viewing direction, then the system instantly updates the
camera path reflecting the intention of the user. The effectiveness
of our system has been verified through extensive user studies.
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