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Abstract. While intrinsic image decomposition has been studied exten-
sively during the past a few decades, it is still a challenging problem. This
is partly because commonly used constraints on shading and reflectance
are often too restrictive to capture an important property of natural im-
ages, i.e., rich textures. In this paper, we propose a novel image model
for handling textures in intrinsic image decomposition, which enables us
to produce high quality results even with simple constraints. We also
propose a novel constraint based on surface normals obtained from an
RGB-D image. Assuming Lambertian surfaces, we formulate the con-
straint based on a locally linear embedding framework to promote local
and global consistency on the shading layer. We demonstrate that com-
bining the novel texture-aware image model and the novel surface normal
based constraint can produce superior results to existing approaches.

Keywords: intrinsic image decomposition, structure-texture separation,
RGB-D image

1 Introduction

Intrinsic image decomposition is a problem to decompose an image I into its
shading layer S and reflectance layer R based on the following model:

I(p) = S(p) ·R(p) (1)

where p is a pixel position. Shading S(p) at p depicts the amount of light reflected
at p, and reflectance R(p) depicts the intrinsic color of the material at p, which
is invariant to illumination conditions.

Intrinsic image decomposition has been extensively studied in computer vi-
sion and graphics communities because it can benefit many computer graphics
and vision applications, such as image relighting [1, 2] and material property edit-
ing [3]. Since Land and McCann first introduced Retinex algorithm in 1971 [4],
various approaches have been introduced for the last a few decades [5–7]. How-
ever, intrinsic image decomposition is still challenging because it is a significantly
ill-posed problem where there are two unknowns S(p) and R(p) for one observed
data I(p) at each pixel p.
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To overcome the ill-posedness, previous methods use constraints, or priors, on
shading and reflectance. Shading has been often assumed to be locally smooth,
while reflectance assumed to be piecewise constant [4]. While these assumptions
work well on simple cases such as Mondrian-like images consisting of patches with
constant reflectance, they fail on most natural images. One important charac-
teristic of natural images is their rich textures. Such textures may be due to
the reflectance layer (e.g., a flat surface with dotted patterns), or the shading
layer (e.g., a surface with bumps and wrinkles causing a shading pattern). Thus,
enforcing simple constraints on either or both shading or reflectance layers with
no consideration on textures may cause erroneous results.

In this paper, we propose a novel intrinsic image decomposition model, which
explicitly models a separate texture layer T , in addition to the shading layer
S and the reflectance layer R. By explicitly modeling textures, S and R in
our model depict only textureless base components. As a result, we can avoid
ambiguity caused by textures, and use simple constraints on S and R effectively.

To further constrain the problem, we also propose a novel constraint based on
surface normal vectors obtained from an RGB-D image. We assume that illumi-
nation changes smoothly, and surfaces are Lambertian, i.e., shading of a surface
can be determined as a dot product of a surface normal and the light direc-
tion. Based on this assumption, our constraint is designed to promote both local
and global consistency of the shading layer based on a locally linear embedding
(LLE) framework [8]. For robustness against noise and efficient computation, we
sparsely sample points for the surface normal constraint based on local variances
of surface normals. This sparse sampling works effectively thanks to our explicit
texture modeling. Our shading and reflectance layers do not have any textures,
so information from sampled positions can be effectively propagated to their
neighbors during the optimization process.

2 Related Work

2.1 Intrinsic Image Decomposition

Intrinsic image decomposition is a long-standing problem in computer vision.
The “Retinex” algorithm was first proposed by Land and McCann in 1971 [4].
The algorithm assumes Mondrian-like images consisting of regions of constant
reflectances, where large image gradients are typically caused by reflectance
changes, and small gradients are caused by illumination. This algorithm was
extended to 2D color images by analyzing derivatives of chromaticity [6].

To overcome the fundamental ill-posedness of the problem, several approaches
have been introduced utilizing additional information, such as multiple images [2,
9–11], depth maps [12–14], and user interaction [15]. Lee et al. [12] proposed a
method, which takes a sequence of RGB-D video frames acquired from a Kinect
camera, and proposed constraints on depth information and temporal consis-
tency. In the setting of single input frame, their temporal constraint cannot be
used. Barron and Malik [13] proposed joint estimation of a denoised depth map
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and spatially-varying illumination. However, due to the lack of proper texture
handling, textures which should belong to either shading or reflectance layer
may appear in the other layer, as shown in Sec. 6.

Recently, Chen and Koltun [14] showed that high quality decomposition re-
sults can be obtained by properly constraining shading components using surface
normals without joint estimation of a denoised depth map. Specifically, they find
a set of nearest neighbors for each pixel based on their spatial positions and nor-
mals, and then constrain the shading component of each pixel to be similar to
those of its neighbors. While our surface normal based constraint is similar to
theirs, there are three different aspects. First, our constraint is derived from the
Lambertian surface assumption, which is more physically meaningful. Second,
our constraint uses not only spatially close neighbors but also distant neighbors,
so we can obtain more globally consistent results. Third, due to our confidence-
based sparse sampling, our method can be more efficient and robust to noise.

Another relevant work to ours is Kwatra et al.’s shadow removal approach
for aerial photos [16], which decomposes an aerial image into shadow and texture
components. Based on the properties of shadows and textures in aerial images,
they define entropy measures for shadows and textures, and minimize them for
decomposition. While their work also explicitly considers textures as we do, their
work focuses on removal of smooth shadows, such as shadows cast by clouds in
aerial images, so it is not suitable for handling complex shadings which are often
observed in natural images.

2.2 Texture Separation

Structure-texture separation has also been an important topic and extensively
studied. Edge-preserving smoothing has been a popular direction, such as aniso-
tropic filtering [17], total variation [18], bilateral filtering [19], nonlocal means
filtering [20], weighted least squares filtering [21], and L0 smoothing [22]. By
applying edge-preserving smoothing to an image, small scale textures can be
separated from structure components. However, as these approaches rely on
local contrasts to distinguish structures and textures, they may fail to properly
capture low contrast structures or high contrast textures.

Other approaches have also been proposed to separate textures regardless of
their contrasts. Subr et al. [23] estimate envelopes of local minima and maxima,
and average the envelopes to capture oscillatory components. Xu et al. [24]
proposed a relative total variation measure, which takes account of inherent
variation in a local window. Recently, Karacan et al. [25] proposed a simple yet
powerful method, which is based on region covariance matrices [26] and nonlocal
means filtering [20]. In our work, we adopt Karacan et al.’s approach to separate
textures from shading and reflectance components, as it preserves underlying
smooth intensity changes.
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3 Image Model and Overall Framework

We define a novel model for intrinsic image decomposition as:

I(p) = B(p) · T (p) = SB(p) ·RB(p) · T (p), (2)

where B(p) = SB(p) · RB(p) is a base layer, and SB(p), RB(p) and T (p) are
shading, reflectance and texture components at a pixel p, respectively. Note that
SB and RB are different from S and R in Eq. (1) as SB and RB contain no
textures. Based on this model, we can safely assume that RB is a Mondrian-like
image, which is piecewise constant. We also assume that illumination changes
smoothly across the entire image, thus SB is also piecewise smooth with no
oscillating variations. Under these assumptions, we will define constraints and
energy functions in the following sections, which will be used to decompose an
image I into SB , RB and T .

The overall process of our method, which consists of two steps, can be sum-
marized as follows. In the first step, we decompose an input RGB image I into
a base layer B and a texture layer T . In the second step, the base layer B is
further decomposed into a reflectance layer RB and a shading layer SB based on
the surface normal constraint and other simple constraints. While we use simple
constraints similar to previous decomposition methods assuming Mondrian-like
images, the constraints can work more effectively as our input for decomposi-
tion is B, instead of I, from which textures have been removed. In addition,
our global constraint based on surface normals promotes overall consistency of
the shading layer, which is hard to achieve by previous methods. Experimental
results and comparisons in Sec. 6 demonstrate the effectiveness of our method.

4 Decomposition of B and T

In this step, we decompose an input image I into a base layer B and a texture
layer T . Texture decomposition has been studied extensively for long time, and
several state-of-the-art approaches are available. Among them, we adopt the re-
gion covariance based method of Karacan et al. [25], which performs nonlocal
means filtering with patch similarity defined using a region covariance descrip-
tor [26]. This method is well-suited for our purpose as it preserves the smoothly
varying shading information in the filtering process. We also tested other meth-
ods, such as [22, 24], which are based on total variation, but we found that they
tend to suppress all small image gradients, including those from shading. Fig. 1
shows that the region covariance based method successfully removes textures on
the cushion and the floor while preserving shading on the sofa.

5 Decomposition of S and R

After obtaining B, we decompose it into SB and RB by minimizing the following
energy function:

f(SB , RB) = fN (SB) + λP fP (SB) + λRfR(RB) (3)
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(a) Input image (b) Base layer B (c) Texture layer T

Fig. 1. Decomposition of B and T .

subject to B(p) = SB(p) · RB(p). In Eq. (3), fN (SB) is a surface normal based
constraint on SB , fP (SB) is a local propagation constraint on SB , and fR(RB)
is a piecewise constant constraint on RB . In the following, we will describe each
constraint in more detail.

5.1 Surface Normal based Shading Constraint fN(SB)

LLE-based local consistency To derive the surface normal based shading
constraint, we first assume that surfaces are Lambertian. On a Lambertian sur-
face, shading S and a surface normal N at p have the following relation:

S(p) = iL · 〈L(p), N(p)〉 , (4)

where iL is an unknown light intensity, L(p) is the lighting direction vector at
p, and 〈L(p), N(p)〉 is the inner product of L(p) and N(p).

As we assume that illumination changes smoothly, we can also assume that
iL and L are constant in a local window. We can express a surface normal at
p as a linear combination of normals at its neighboring pixels q ∈ Nl(p), i.e.
N(p) =

∑
q∈Nl(p)

wN
pqN(q) where wN

pq is a linear combination weight. Then, S(p)

can also be expressed as the same linear combination of the neighbors S(q):

S(p) = iL·

〈
L,

∑
q∈Nl(p)

wN
pqN(q)

〉
=

∑
q∈Nl(p)

wN
pq (iL · 〈L,N(q)〉) =

∑
q∈Nl(p)

wN
pqS(q).

(5)
Based on this relation, we can define a local consistency constraint fNl (SB) as:

fNl (SB) =
∑

p∈PN

SB(p)−
∑

q∈Nl(p)

wN
pqSB(q)

2

, (6)

where PN is a set of pixels. Note that we could derive this constraint without
having to know the value of the light intensity iL.

Interestingly, Eq. (5) can be interpreted as a LLE representation [8]. LLE
is a data representation, which projects a data point from a high dimensional
space onto a low dimensional space by representing it as a linear combination of
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its neighbors in the feature space. Adopting the LLE approach, we can calculate
the linear combination weights {wN

pq} by solving:

argmin
{wN

pq}

∑
p∈PN

‖N(p)−
∑

q∈Nl(p)

wN
pqN(q)‖2, (7)

subject to
∑

q∈Nl(p)
wN

pq = 1.

To find Nl(p), we build a 6D vector for each pixel as [x(p), y(p), z(p), nx(p),

ny(p), nz(p)]
T

, where [x(p), y(p), z(p)]
T

is the 3D spatial location obtained from

the input depth image, and [nx(p), ny(p), nz(p)]
T

is the surface normal at p.
Then, we find the k-nearest neighbors using the Euclidean distance between the
feature vectors at p and other pixels.

Global consistency While a locally consistent shading result can be obtained
with fNl (SB), the result may be still globally inconsistent. Imagine that we have
two flat regions, which are close to each other, but their depths are slightly
different. Then, for each pixel in one region, all of its nearest neighbors will
be found in the same region, and the two regions may end up with completely
different shading values. This phenomenon can be found in Chen and Koltun’s
results in Fig. 6, as their method promotes only local consistency. In their shading
result on the first row, even though the cushion on the sofa should have similar
shading to the sofa and the wall, they have totally different shading values.

In order to avoid such global inconsistency, we define another constraint
fNg (SB), which promotes global consistency:

fNg (SB) =
∑

p∈PN

SB(p)−
∑

q∈Ng(p)

wN
pqSB(q)

2

, (8)

where Ng(p) is a set of global k-nearest neighbors for each pixel p. To find Ng(p),
we simply measure the Euclidean distance between the surface normals at p and
other pixels without considering their spatial locations, so that the resulting
Ng(p) can include spatially distant pixels. With the two constraints, we define
the constraint fN (SB) as:

fN (SB) = fNl (SB) + λNg f
N
g (SB), (9)

where λNg is the relative weight for fNg . We set k = 20 for both local and global
consistency constraints.

Sub-sampling for efficiency and noise handling It can be time-consuming
to find k-nearest neighbors and apply fN (SB) for every pixel in an image. More-
over, depth images from commercial RGB-D cameras are often severely noisy
as shown in Fig. 2a. We may apply a recent depth map denoising method, but
there can still remain significant errors around depth discontinuities causing a
noisy normal map (Fig. 2c).
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(a) Raw depth image (b) Raw normal map (c) Denoised normal map

Fig. 2. Depth images from commercial RGB-D cameras often suffer from severe noise,
which is difficult to remove using a denoising method.

To improve the efficiency and avoid noisy normals, we propose a sub-sampling
based strategy for building PN . Specifically, we divide an image into a uniform
grid. In each grid cell, we measure the variance of the surface normals in a lo-
cal window centered at each pixel. Then, we choose a pixel with the smallest
variance. This is because complex scene geometry is more likely to cause severe
depth noise, so we would better choose points in a smooth region with low vari-
ance. We also find the nearest neighbors for Nl(p) and Ng(p) from PN to avoid
noisy normals and accelerate the nearest neighbor search. While we use the con-
straint fN (SB) only for sub-sampled pixel positions, information on the sampled
positions can be propagated to neighboring pixels during the optimization due
to the constraint fP (SB), which is described next.

5.2 Local Propagation Constraint fP (SB)

Since we use subsampled pixel positions for the constraint fN (SB), other pixels
do not have any shading constraint. To properly constrain such pixels, we prop-
agate the effects of fN (SB) to neighboring pixels using two local smoothness
constraints on shading. Specifically, we define fP (SB) as:

fP (SB) = fPlap(SB) + λPNf
P
N (SB), (10)

where fPlap(SB) is based on the structure of the base layer B, and fPN (SB) is
based on surface normals.

Since all the textures are already separated out to T and we assume that RB

is piecewise constant, we can safely assume that small image derivatives in B
are from the shading layer SB . Then, SB can be approximated in a small local
window as:

SB(p) ≈ aB(p) + b, (11)

where a = 1
Bf−Bb

and b = −Bb

Bf−Bb
, and Bf and Bb are two primary colors in

the window. This approximation inspires us to use the matting Laplacian [27]
to propagate information from the sub-sampled pixels to their neighbors in a
structure-aware manner. Specifically, we define the first constraint for propaga-
tion using the matting Laplacian as follows:

fPlap(SB) =
∑
k

∑
(i,j)∈ωk

wlap
ij (SB(i)− SB(j))2, (12)
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where ωk is the k-th local window. wlap
ij is the (i, j)-th matting Laplacian element,

which is computed as:

wlap
ij =

∑
k|(i,j)∈ωk

{
δij −

1

|ωk|

(
1 +

(
B(i)− µB

k

) (
ΣB

k +
ε

|ωk|
I3

)−1 (
B(j)− µB

k

))}
,

(13)
where ε is a regularizing parameter, and |ωk| is the number of pixels in the win-
dow ωk. δij is Kronecker delta. µB

k and ΣB
k are the mean vector and covariance

matrix of B in ωk, respectively. I3 is a 3× 3-identity matrix.
This constraint is based on the key advantage of removing textures from

the input image. With the original image I, because of textures, information
at sample points cannot be propagated properly while being blocked by edges
introduced by textures. In contrast, by removing textures from the image, we
can effectively propagate shading information using the structure of the base
image B, obtaining higher quality shading results.

The second local smoothness constraint fPN (SB) is based on surface normals.
Even if surface normals are noisy, they still provide meaningful geometry infor-
mation for smooth surfaces. Thus, we formulate a constraint to promote local
smoothness based on the differences between adjacent surface normals as follows:

fPN (SB) =
∑
p∈P

∑
q∈N (p)

wN
pq (SB(p)− SB(q))

2
, (14)

where P is a set of all pixels in the image and N (p) is the set of 8-neighbors of p.
wN

pq is a continuous weight, which is defined using the angular distance between
normal vectors at p and q:

wN
pq = exp

(
−1− 〈N(p), N(q)〉2

σ2
n

)
, (15)

where we set σn = 0.5. wN
pq becomes close to 1 if the normals N(p) and N(q) are

similar to each other, and becomes small if they are different.
Fig. 3 shows the effect of the constraint fP (SB). The local propagation con-

straint enables shading information obtained from the LLE-based constraints to
be propagated to other pixels, which results in clear shading near edges.

5.3 Reflectance Constraint fR(RB)

The constraint fR(RB) is based on a simple assumption, which is used by many
Retinex-based approaches [6, 12, 28, 29]: if two neighboring pixels have the same
chromaticity, their reflectance should be the same as well. Based on this assump-
tion, previous methods often use a constraint defined as:

fR(RB) =
∑
p∈P

∑
q∈N (p)

wR
pq (RB(p)−RB(q))

2
. (16)
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(a) (b) (c)

(d) (e) (f)

Fig. 3. Effect of the local propagation constraint fP (SB). (a,d) Input RGB and depth
images. (b-c) Reflectance and shading results without fP (SB). (e-f) Reflectance and
shading results with fP (SB). Without the constraint, shading of pixels which have
not been sampled for normal based constraint fN (SB) are solely determined by the
reflectance constraint through the optimization process. As a result, (c) shows artifacts
on the bookshelves due to the inaccurate reflectance values.

The weighting function wR
pq is a positive constant if the difference between the

chromaticity at p and q is smaller than a certain threshold, and zero otherwise.
For this constraint, it is critical to use a good threshold, but finding a good
threshold is non-trivial and can be time consuming [29].

Instead of using a threshold, we use a continuous weight wR′

pq , which involves
chromaticity difference between two pixels p and q in the form of angular distance
between two directional vectors:

wR′

pq = exp

(
−1− 〈C(p), C(q)〉2

σ2
c

){
1 + exp

(
−B(p)2 +B(q)2

σ2
i

)}
, (17)

where chromaticity C(p) = B(p)/|B(p)| is a normalized 3D vector consisting
of RGB color channels. We set σ2

c = 0.0001, σ2
i = 0.8. The first exponential

term measures similarity between C(p) and C(q) using their angular distance.
The term becomes 1 if C(p) = C(q) and becomes close to 0 if C(p) and C(q)
are different from each other, so that consistency between neighboring pixels
can be promoted only when C(p) and C(q) are close to each other. The second
exponential term is a darkness weight. Due to the nature of imaging sensors, dark
pixels suffer from noise more than bright pixels, causing severe chromaticity noise
in dark regions such as shadows (Fig. 4). Thus, the second term gives larger
weights to dark pixels to overcome such chromaticity noise. Using the weight
wR′

pq , our constraint fR(RB) is defined as:

fR(RB) =
∑
p∈P

∑
q∈N (p)

wR′

pq (RB(p)−RB(q))
2
. (18)
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(a) (b) (c)

Fig. 4. Comparison of chromaticity noise between a bright region (black box) and a
dark region (green box). (a) Input image. (b) Chromaticity of the input image. (c)
Magnified views of two regions.

5.4 Optimization

To simplify the optimization, we take the logarithm to our model as done in [29,
12, 14]. Then, we get logB(p) = sB(p) + rB(p) where sB(p) = logSB(p) and
rB(p) = logRB(p). We empirically found that proposed constraints could also
represent the similarities between pixels in the logarithmic domain, even for the
LLE weights. Thus, we approximate the original energy function (Eq. (3)) as:

f(sB) = fN (sB) + λP fP (sB) + λRfR(logB(p)− sB(p)). (19)

As all the constraints fN , fP , and fR are quadratic functions, Eq. (19) is a
quadratic function of sB . We minimize Eq. (19) using a conjugate gradient
method. We used λP = λR = 4, λNg = 1, and λPN = 0.00625.

6 Results

For evaluation, we implemented our method using Matlab, and used the structure-
texture separation code of the authors [25] for decomposition of B and T . For
a 624 × 468 image, decomposition of B and T takes about 210 seconds, and
decomposition of S and R takes about 150 seconds on a PC with Intel Core i7
2.67GHz CPU, 12GB RAM, and Microsoft Windows 7 64bit OS.

For evaluation, we selected 14 images from the NYU dataset [30], which pro-
vides 1,400 RGB-D images. When selecting images, we avoided images which
do not fit our Lambertian surface assumption, e.g., images with glossy surfaces
such as a mirror or a glass. Fig. 5 shows some of the selected images. For other
images and their corresponding results, we refer the readers to our supplemen-
tary material. It is worth mentioning that, while Chen and Koltun [14] used
the synthetic dataset of [31] to quantitatively evaluate their approach, in our
evaluation, we did not include such quantitative evaluation. This is because the
synthetic dataset of [31] was not generated for the purpose of intrinsic image
decomposition benchmark, so its ground truth reflectance and shading images
are not physically correct in many cases, such as shading of messy hairs and
global illumination.

In our image model I(p) = SB(p) · RB(p) · T (p), texture T can contain not
only reflectance textures, but also shading textures caused by subtle and com-
plex geometry changes, which are often not captured in a noisy depth map. In



Intrinsic Image Decomposition using Texture Separation and Normals 11

Fig. 5. Test images from the NYU dataset [30].

this paper, we do not further decompose T into reflectance and shading tex-
tures. Instead, for visualization and comparison, we consider T as a part of the
reflectance layer R, i.e., R(p) = RB(p) · T (p) and S(p) = SB(p). That is, every
reflectance result in this paper is the product of the base reflectance layer RB

and the texture layer T .

We evaluated our method using qualitative comparisons with other meth-
ods. Fig. 6 shows results of three other methods and ours. The conventional
color Retinex algorithm [32] takes a single RGB image as an input. This method
highly depends on its reflectance smoothness constraint, which can be easily dis-
couraged by rich textures. Thus, its shading results contain a significant amount
of textures, which should be in the reflectance layers (e.g., patterned cushion in
the sofa scene).

Barron and Malik [13] jointly estimate a refined depth map and spatially
varying illumination, and obtain a shading image from that information. Thus,
their shading results in Fig. 6 do not contain any textures on them. However,
their shading results are over-smoothed on object boundaries because of their
incorrect depth refinement (e.g., the chair and bucket in the desk scene).

The results of Chen and Koltun [14] show more reliable shading results than
[32, 13], even though they do not use any explicit modeling for textures. This
is because of their effective shading constraints based on depth cues. However,
as mentioned in Sec. 2, due to the lack of global consistency constraints, their
shading results often suffer from the global inconsistency problem (e.g., the chair
in the kitchen scene). On the contrary, our method produces well-decomposed
textures (e.g., cushion in the sofa scene) and globally consistent shading (e.g.,
the chair and the bucket in the desk scene) compared to the other three methods.

To show the effect of our texture filtering step, we also tested our algorithm
without texture filtering (Fig. 7). Thanks to our non-local shading constraints,
the shading results are still globally consistent (Fig. 7b). However, the input
image without texture filtering breaks the Mondrian-like image assumption, so
lots of reflectance textures remain in the shading result. This experiment shows
that our method fully exploits properties of the texture filtered base image, such
as piecewise-constant reflectance and texture-free structure information.
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(a) (b) (c) (d) (e)

Fig. 6. Decomposition result comparison with other methods. (a) Input. (b)
Retinex [32]. (c) Barron and Malik [13]. (d) Chen and Koltun [14]. (e) Ours.

(a) (b) (c)

Fig. 7. Decomposition results without and with the texture filtering step. (a) Input im-
age. (b) Reflectance and shading results without texture filtering step. (c) Reflectance
and shading results with texture filtering step.
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(a) (b) (c) (d) (e)

Fig. 8. Decomposition results of other methods using a texture-filtered input. (a) Input
base image. (b) Retinex [32]. (c) Barron and Malik [13]. (d) Chen and Koltun [14]. (e)
Ours.

We also conducted another experiment to clarify the effectiveness of our de-
composition step. This time, we fed texture-filtered images to previous methods
as their inputs. Fig. 8 shows texture filtering provides some improvements to
other methods too, but the improvements are not as big as ours. Retinex [32]
benefited from texture filtering, but the method has no shading constraints and
the result still shows globally inconsistent shading (the bucket and the closet).
Big improvements did not happen with recent approaches [13, 14] either. [13]
strongly uses its smooth shape prior, which causes over-smoothed shapes and
shading in regions with complex geometry. In the result of [14], globally incon-
sistent shading still remains due to the lack of global consistency constraints.

7 Applications

One straightforward application of intrinsic image decomposition is material
property editing such as texture composition. Composing textures into an image
naturally is tricky, because it requires careful consideration of spatially varying
illumination. If illumination changes such as shadows are not properly handled,
composition results may look too flat and artificial (Fig. 9b). Instead, we can
first decompose an image into shading and reflectance layers, and compose new
textures into the reflectance layer. Then, by recombining the shading and re-
flectance layers, we can obtain a more naturally-looking result (Fig. 9c).

Another application is image relighting (Fig. 10). Given an RGB-D input
image, we can generate a new shading layer using the geometry information
obtained from the depth information. Then, by combining the new shading layer
with the reflectance layer of the input image, we can produce a relighted image.

8 Conclusions

Although intrinsic image decomposition has been extensively studied in com-
puter vision and graphics, the progress has been limited by the nature of nat-
ural images, especially rich textures. In this work, we proposed a novel image
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(a) Original image (b) Naive copy & paste (c) Our method

Fig. 9. Texture composition.

(a) (b) (c) (d)

Fig. 10. Image relighting. (a, c) Original images. (b, d) Relighted images.

model, which explicitly models textures for intrinsic image decomposition. With
explicit texture modeling, we can avoid confusion on the smoothness property
caused by textures and can use simple constraints on shading and reflectance
components. To further constrain the decomposition problem, we additionally
proposed a novel constraint based on surface normals obtained from an RGB-D
image. Assuming Lambertian surfaces, we formulated our surface normal based
constraints using a LLE framework [8] in order to promote both local and global
consistency of shading components.

In our experiments, we assumed textures to be a part of reflectance for the
purpose of comparison with other methods. However, textures may be caused by
either or both of reflectance and shading, as we mentioned in Introduction. As
future work, we plan to further decompose textures into reflectance and shading
texture layers using additional information such as surface geometry.
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